×

Topologically isotopic and smoothly inequivalent 2-spheres in simply connected 4-manifolds whose complement has a prescribed fundamental group. (English) Zbl 07904859

Summary: We describe a procedure to construct infinite sets of pairwise smoothly inequivalent 2-spheres in simply connected 4-manifolds, which are topologically isotopic and whose complement has a prescribed fundamental group that satisfies some conditions. This class of groups include cyclic groups and the binary icosahedral group. These are the first known examples of such exotic embeddings of 2-spheres in 4-manifolds. Examples of locally flat embedded 2-spheres in a nonsmoothable 4-manifold whose complements are homotopy equivalent to smoothly embedded ones are also given.

MSC:

57K45 Higher-dimensional knots and links
57R55 Differentiable structures in differential topology
57R40 Embeddings in differential topology
57R52 Isotopy in differential topology

References:

[1] 10.2307/120972 · Zbl 0931.57016 · doi:10.2307/120972
[2] ; Akbulut, Selman, Isotoping 2-spheres in 4-manifolds, Proceedings of the Gökova Geometry/Topology Conference 2014, 264, 2015 · Zbl 1354.57028
[3] 10.1093/acprof:oso/9780198784869.001.0001 · doi:10.1093/acprof:oso/9780198784869.001.0001
[4] 10.1007/s00222-010-0254-y · Zbl 1206.57029 · doi:10.1007/s00222-010-0254-y
[5] 10.1112/jtopol/jtn004 · Zbl 1146.57041 · doi:10.1112/jtopol/jtn004
[6] 10.1112/jlms/jdu075 · Zbl 1355.57028 · doi:10.1112/jlms/jdu075
[7] ; Baldridge, Scott; Kirk, Paul, Constructions of small symplectic 4-manifolds using Luttinger surgery, J. Differential Geom., 82, 2, 317, 2009 · Zbl 1173.53042
[8] 10.1112/jtopol/jts027 · Zbl 1297.57064 · doi:10.1112/jtopol/jts027
[9] 10.2140/agt.2011.11.1649 · Zbl 1234.57035 · doi:10.2140/agt.2011.11.1649
[10] 10.2140/gtm.2012.18.61 · doi:10.2140/gtm.2012.18.61
[11] 10.2140/agt.2007.7.2103 · Zbl 1142.57018 · doi:10.2140/agt.2007.7.2103
[12] ; Freedman, Michael H.; Quinn, Frank, Topology of 4-manifolds. Princeton Math. Ser., 39, 1990 · Zbl 0705.57001
[13] ; Gompf, Robert E., Sums of elliptic surfaces, J. Differential Geom., 34, 1, 93, 1991 · Zbl 0751.14024
[14] 10.1090/gsm/020 · doi:10.1090/gsm/020
[15] ; Hambleton, Ian; Kreck, Matthias, Cancellation, elliptic surfaces and the topology of certain four-manifolds, J. Reine Angew. Math., 444, 79, 1993 · Zbl 0779.57015
[16] ; Hambleton, Ian; Kreck, Matthias, Cancellation of hyperbolic forms and topological four-manifolds, J. Reine Angew. Math., 443, 21, 1993 · Zbl 0779.57014
[17] 10.2140/gt.2006.10.27 · Zbl 1104.57018 · doi:10.2140/gt.2006.10.27
[18] 10.2140/agt.2008.8.2263 · Zbl 1190.57019 · doi:10.2140/agt.2008.8.2263
[19] 10.4310/MRL.1995.v2.n2.a1 · Zbl 0853.57020 · doi:10.4310/MRL.1995.v2.n2.a1
[20] 10.1007/BF02566615 · Zbl 0723.57015 · doi:10.1007/BF02566615
[21] 10.1353/ajm.1997.0029 · Zbl 0886.57027 · doi:10.1353/ajm.1997.0029
[22] 10.1007/BFb0063355 · doi:10.1007/BFb0063355
[23] 10.4310/MRL.1997.v4.n6.a11 · Zbl 0892.57021 · doi:10.4310/MRL.1997.v4.n6.a11
[24] 10.2307/2000379 · Zbl 0608.57019 · doi:10.2307/2000379
[25] 10.2307/2001564 · Zbl 0719.57014 · doi:10.2307/2001564
[26] 10.1112/topo.12121 · Zbl 1437.57031 · doi:10.1112/topo.12121
[27] 10.1093/imrn/rnu187 · Zbl 1326.57043 · doi:10.1093/imrn/rnu187
[28] ; Tange, Motoo, The link surgery of S2× S2 and Scharlemann’s manifolds, Hiroshima Math. J., 44, 1, 35, 2014 · Zbl 1317.57020
[29] 10.4310/MRL.1994.v1.n6.a15 · Zbl 0853.57019 · doi:10.4310/MRL.1994.v1.n6.a15
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.