×

Quantile-constrained Wasserstein projections for robust interpretability of numerical and machine learning models. (English) Zbl 07904141

Summary: Robustness studies of black-box models is recognized as a necessary task for numerical models based on structural equations and predictive models learned from data. These studies must assess the model’s robustness to possible misspecification of regarding its inputs (e.g., covariate shift). The study of black-box models, through the prism of uncertainty quantification (UQ), is often based on sensitivity analysis involving a probabilistic structure imposed on the inputs, while ML models are solely constructed from observed data. Our work aim at unifying the UQ and ML interpretability approaches, by providing relevant and easy-to-use tools for both paradigms. To provide a generic and understandable framework for robustness studies, we define perturbations of input information relying on quantile constraints and projections with respect to the Wasserstein distance between probability measures, while preserving their dependence structure. We show that this perturbation problem can be analytically solved. Ensuring regularity constraints by means of isotonic polynomial approximations leads to smoother perturbations, which can be more suitable in practice. Numerical experiments on real case studies, from the UQ and ML fields, highlight the computational feasibility of such studies and provide local and global insights on the robustness of black-box models to input perturbations.

MSC:

62F35 Robustness and adaptive procedures (parametric inference)
49K40 Sensitivity, stability, well-posedness
68T01 General topics in artificial intelligence
62H30 Classification and discrimination; cluster analysis (statistical aspects)
62P30 Applications of statistics in engineering and industry; control charts
62P99 Applications of statistics
41A10 Approximation by polynomials
97R30 Applications of computer science in sciences (educational aspects) (MSC2010)
11E25 Sums of squares and representations by other particular quadratic forms
49Q12 Sensitivity analysis for optimization problems on manifolds
65F30 Other matrix algorithms (MSC2010)

References:

[1] A. Alfonsi and B. Jourdain. A remark on the optimal transport between two probability measures sharing the same copula. Statistics & Probability Letters, 84:131-134, January 2014. MathSciNet: MR3131266 · Zbl 1296.60023
[2] D.L. Allaire and K. E. Willcox. Distributional sensitivity analysis. Procedia - Social and Behavioral Sciences, 2:7595-7596, 2010.
[3] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference on Machine Learning, volume 70, pages 214-223, 2017.
[4] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok. Synthesizing robust adversarial examples. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on Machine Learning (ICML), 10-15, 2018, volume 80, pages 284-293, 2018.
[5] European Banking Authority. 2021 EU-Wide Stress Test. European Banking Authority, 2020.
[6] F. Bachoc, F. Gamboa, M. Halford, J-M. Loubes, and L. Risser. Explaining machine learning models using entropic variable projection. Information and Inference: A Journal of the IMA, 12(3), 05 2023. iaad010. MathSciNet: MR4589093 · Zbl 07858353
[7] J. A. Bagnell and A-M Farahmand. Learning positive functions in a hilbert space. 8th NIPS Workshop on Optimization for Machine Learning, 2015.
[8] A. Barredo Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila, and F. Herrera. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58:82-115, June 2020.
[9] C. Bénard, G. Biau, S. Da Veiga, and E. Scornet. SHAFF: Fast and consistent SHApley eFfect estimates via random Forests. In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera, editors, Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, volume 151, pages 5563-5582, 2022.
[10] N. Benoumechiara, N. Bousquet, B. Michel, and P. Saint-Pierre. Detecting and modeling critical dependence structures between random inputs of computer models. Dependence Modeling, 8(1):263-297, 2020. MathSciNet: MR4168693 · Zbl 1457.62098
[11] B. Bercu, J. Bigot, and G. Thurin. Monge-kantorovich superquantiles and expected shortfalls with applications to multivariate risk measurements, 2023.
[12] D. P. Bertsekas. Nonlinear programming. Athena scientific, Belmont, Mass, 3rd ed edition, 2016. MathSciNet: MR3587371 · Zbl 1360.90236
[13] N. Bloom. The impact of uncertainty shocks. Econometrica, 77(3):623-685, 2009. MathSciNet: MR2531358 · Zbl 1176.91114
[14] E. Borgonovo, A. Figalli, E. Plischke, and G. Savaré. Global sensitivity analysis via optimal transport. Management Science, 2024. in press. MathSciNet: MR3413547
[15] B. Broto, F. Bachoc, and M. Depecker. Variance Reduction for Estimation of Shapley Effects and Adaptation to Unknown Input Distribution. SIAM/ASA Journal on Uncertainty Quantification, 8(2):693-716, 2020. MathSciNet: MR4096129 · Zbl 1445.62186
[16] L. Bruzzone and M. Marconcini. Domain Adaptation Problems: A DASVM Classification Technique and a Circular Validation Strategy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(5):770-787, 2010.
[17] C. Bénard, S. Da Veiga, and E. Scornet. Mean decrease accuracy for random forests: inconsistency, and a practical solution via the Sobol-MDA. Biometrika, 109(4):881-900, 02 2022. MathSciNet: MR4519106 · Zbl 07638091
[18] G. Chastaing, F. Gamboa, and C. Prieur. Generalized Hoeffding-Sobol decomposition for dependent variables - Application to sensitivity analysis. Electronic Journal of Statistics, 6:2420-2448, 2012. MathSciNet: MR3020270 · Zbl 1334.62098
[19] V. Chernozhukov, A. Galichon, M. Hallin, and M. Henry. Monge-Kantorovich depth, quantiles, ranks and signs. The Annals of Statistics, 45(1):223 - 256, 2017. MathSciNet: MR3611491 · Zbl 1426.62163
[20] Y. Chung, W. Neiswanger, I. Char, and J. Schneider. Beyond pinball loss: Quantile methods for calibrated uncertainty quantification. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, volume 34, pages 10971-10984, 2021.
[21] R. T. Clemen and T. Reilly. Correlations and copulas for decision and risk analysis. Management Science, 45(2):208-224, 1999. · Zbl 1231.91166
[22] I. Covert, S. Lundberg, and S.-I. Lee. Understanding Global Feature Contributions With Additive Importance Measures. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 17212-17223, 2020.
[23] I. Csiszár. I-Divergence Geometry of Probability Distributions and Minization problems. The Annals of Probability, 3(1):146-158, 1975. MathSciNet: MR0365798 · Zbl 0318.60013
[24] S. Da Veiga, F. Gamboa, B. Iooss, and C. Prieur. Basics and Trends in Sensitivity Analysis. Theory and Practice in R. SIAM. Computational Science and Engineering, 2021. MathSciNet: MR4359984 · Zbl 1532.62005
[25] S. Da Veiga and A. Marrel. Gaussian process modeling with inequality constraints. Annales de la Faculté des Sciences de Toulouse, 3:529-555, 2012. MathSciNet: MR3076411 · Zbl 1279.60047
[26] L. De Lara, A. González-Sanz, N. Asher, and J-M Loubes. Transport-based counterfactual models. arXiv preprint arXiv:2108.13025, 2021.
[27] L. De Lara, A. González-Sanz, and J-M Loubes. Diffeomorphic registration using sinkhorn divergences. SIAM Journal on Imaging Sciences, 16(1):250-279, 2023. MathSciNet: MR4544010 · Zbl 1518.49050
[28] E. de Rocquigny, N. Devictor, and S. Tarantola, editors. Uncertainty in Industrial Practice. John Wiley and Sons, Ltd, Chichester, UK, April 2008. · Zbl 1161.90001
[29] H. Dette and W. J. Studden. The theory of canonical moments with applications in statistics, probability, and analysis. Wiley series in probability and statistics. Wiley, New York, 1997. MathSciNet: MR1468473 · Zbl 0886.62002
[30] J. C. Duchi, P. W. Glynn, and H. Namkoong. Statistics of Robust Optimization: A Generalized Empirical Likelihood Approach. Mathematics of Operations Research, 43:835-1234, 2021. MathSciNet: MR4312583
[31] J.-M. Dufour. Distribution and quantile functions. McGill University Report, 1995.
[32] C. Durot and A.-S. Tocquet. Goodness of fit test for isotonic regression. ESAIM:P&S, 5:119-140, 2001. MathSciNet: MR1875667 · Zbl 0990.62041
[33] G. Ecoto, A. Bibault, and A. Chambaz. One-step ahead Super Learning from short time series of many slightly dependent data, and anticipating the cost of natural disasters. arXiv:2107:13291, 2021.
[34] Gal Elidan. Copulas in machine learning. In Piotr Jaworski, Fabrizio Durante, and Wolfgang Karl Härdle, editors, Copulae in Mathematical and Quantitative Finance, pages 39-60, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. MathSciNet: MR3288238 · Zbl 1272.68342
[35] T. Fel, R. Cadene, M. Chalvidal, M. Cord, D. Vigouroux, and T. Serre. Look at the Variance! Efficient Black-box Explanations with Sobol-based Sensitivity Analysis. In Advances in Neural Information Processing Systems, volume 34, pages 26005-26014, 2021.
[36] J-C Fort, T. Klein, and A. Lagnoux. Global Sensitivity Analysis and Wasserstein Spaces. SIAM/ASA Journal on Uncertainty Quantification, 9(2):880-921, 2021. MathSciNet: MR4276978 · Zbl 1468.62267
[37] S. Fredenhagen, H. J. Oberle, and G. Opfer. On the Construction of Optimal Monotone Cubic Spline Interpolations. Journal of Approximation Theory, 96(2):182-201, 1999. MathSciNet: MR1671194 · Zbl 0934.41009
[38] C. Frogner, C. Zhang, H. Mobahi, M. Araya, and T.A. Poggio. Learning with a Wasserstein loss. In Advances in Neural Information Processing Systems, volume 28, 2015.
[39] A. Fu, B. Narasimhan, and S. Boyd. CVXR: An R package for disciplined convex optimization. Journal of Statistical Software, 94(14):1-34, 2020.
[40] S. Fu, M. Couplet, and N. Bousquet. An adaptive kriging method for solving nonlinear inverse statistical problems. Environmetrics, 28(4):e2439, 2017. MathSciNet: MR3660098
[41] C. Gauchy, J. Stenger, R. Sueur, and B. Iooss. An information geometry approach to robustness analysis for the uncertainty quantification of computer codes. Technometrics, 64:80-91, 2022. MathSciNet: MR4373311
[42] A.L. Gibbs and F. E. Su. On choosing and bounding probability metrics. International Statistical Review / Revue Internationale de Statistique, 70(3):419-435, 2002. · Zbl 1217.62014
[43] U. Grömping. Variable importance in regression models. Wiley Interdisciplinary Reviews: Computational Statistics, 7:137-152, 2015. MathSciNet: MR3349293 · Zbl 07912760
[44] Shimodaira; H. Improving predictive inference under covariate shift by weighting the log-likelihood function. Journal of Statistical Planning and Inference, 90(2):227-244, 2000. MathSciNet: MR1795598 · Zbl 0958.62011
[45] M. Hallin, E. del Barrio, J. Cuesta-Albertos, and C. Matrán. Distribution and quantile functions, ranks and signs in dimension d: A measure transportation approach. The Annals of Statistics, 49(2):1139-1165, April 2021. Publisher: Institute of Mathematical Statistics. MathSciNet: MR4255122 · Zbl 1468.62282
[46] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer Series in Statistics. Springer: New York, 2009. MathSciNet: MR2722294 · Zbl 1273.62005
[47] M. Il Idrissi, V. Chabridon, and B. Iooss. Developments and applications of Shapley effects to reliability-oriented sensitivity analysis with correlated inputs. Environmental Modelling and Software, 143:105115, 2021.
[48] B. Iooss, V. Chabridon, and V. Thouvenot. Variance-based importance measures for machine learning model interpretability. In Actes du 23ème Congrès de Maîtrise des Risques et de Sûreté de Fonctionnement \(( \mathit{\lambda} \operatorname{\mu} 23)\), Saclay, France, october 2022.
[49] B. Iooss, R. Kennet, and P. Secchi. Different views of interpretability. In A. Lepore, B. Palumbo, and J-M. Poggi, editors, Interpretability for Industry 4.0: Statistical and Machine Learning Approaches. Springer, 2022.
[50] B. Iooss and P. Lemaître. A review on global sensitivity analysis methods. In G. Dellino and C. Meloni, editors, Uncertainty Management in Simulation-Optimization of Complex Systems: Algorithms and Applications, pages 101-122. Springer US, 2015. MathSciNet: MR3084106
[51] O. Kallenberg. Foundations of modern probability. Probability theory and stochastic modelling. Springer, Cham, Switzerland, 2021. MathSciNet: MR4226142 · Zbl 1478.60001
[52] M. Koklu and Y. S. Taspinar. Determining the Extinguishing Status of Fuel Flames With Sound Wave by Machine Learning Methods. IEEE Access, 9:86207-86216, 2021.
[53] J-B. Lasserre. An Introduction to Polynomial and Semi-Algebraic Optimization. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2015. MathSciNet: MR3469431 · Zbl 1320.90003
[54] P. Lemaître. Analyse de sensibilité en fiabilité des structures. PhD thesis, Université de Bordeaux, Bordeaux, 2014.
[55] P. Lemaître, E. Sergienko, A. Arnaud, N. Bousquet, F. Gamboa, and B. Iooss. Density modification-based reliability sensitivity analysis. Journal of Statistical Computation and Simulation, 85(6):1200-1223, 2015. MathSciNet: MR3299345 · Zbl 1457.62022
[56] K. Liu, H. Kargupta, and J. Ryan. Random projection-based multiplicative data perturbation for privacy preserving distributed data mining. IEEE Transactions on Knowledge and Data Engineering, 18:92-106, 2006.
[57] C. Molnar. Interpretable Machine Learning. A Guide for Making Black Box Models Explainable. leanpub.com, 1 edition, 2021.
[58] S-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard. Universal adversarial perturbations. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1765-1773, 2017.
[59] K. Murray, S. Müller, and B. A. Turlach. Fast and flexible methods for monotone polynomial fitting. Journal of Statistical Computation and Simulation, 86(15):2946-2966, 2016. MathSciNet: MR3523154 · Zbl 07184776
[60] A. Narayan and D. Xiu. Distributional sensitivity for uncertainty quantification. Communications in Computational Physics, 10(1):140-160, 2011. MathSciNet: MR2787413 · Zbl 1364.65009
[61] R. B. Nelsen. An introduction to copulas. Springer series in statistics (2nd edition). Springer, New York, 2006. MathSciNet: MR2197664 · Zbl 1152.62030
[62] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd. Conic Optimization via Operator Splitting and Homogeneous Self-Dual Embedding. Journal of Optimization Theory and Applications, 169(3):1042-1068, 2016. MathSciNet: MR3501397 · Zbl 1342.90136
[63] A. B. Owen. Sobol’ Indices and Shapley Value. SIAM/ASA Journal on Uncertainty Quantification, 2(1):245-251, 2014. MathSciNet: MR3283908 · Zbl 1308.91129
[64] T. Paananen, J. Piironen, M. Riis Andersen, and A. Vehtari. Variable selection for Gaussian processes via sensitivity analysis of the posterior predictive distribution. In Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics, volume 89, pages 1743-1752, 2019.
[65] P. A. Parrilo. Algebraic Optimization and Semidefinite Optimization. MIT Lectures Notes (EIDMA Minicourse), 2010.
[66] P. A. Parrilo. Polynomial optimization, sums of squares, and applications. In Semidefinite Optimization and Convex Algebraic Geometry, pages 47-157. SIAM, 2012. MathSciNet: MR3050242 · Zbl 1360.90194
[67] M.K. Paul, M.R. Islam, and Sarowar Sattar A.H.M. An efficient perturbation approach for multivariate data in sensitive and reliable data mining. Journal of Information Security and Applications, 62:102954, 2021.
[68] S.M. Pesenti. Reverse Sensitivity Analysis for Risk Modelling. Risks, 10:141, 2022.
[69] E. Plischke and E. Borgonovo. Copula theory and probabilistic sensitivity analysis: Is there a connection? European Journal of Operational Research, 277(3):1046-1059, 2019. MathSciNet: MR3958552 · Zbl 1430.62103
[70] S. Razavi, A. Jakeman, A. Saltelli, C. Prieur, B. Iooss, E. Borgonovo, E. Plischke, S. Lo Piano, T. Iwanaga, W. Becker, S. Tarantola, J.H.A. Guillaume, J. Jakeman, H. Gupta, N. Melillo, G. Rabitti, V. Chabridon, Q. Duan, X. Sun, S. Smith, R. Sheikholeslami, N. Hosseini, M. Asadzadeh, A. Puy, S. Kucherenko, and H.R. Maier. The Future of Sensitivity Analysis: An essential discipline for systems modeling and policy support. Environmental Modelling and Software, 137:104954, 2021.
[71] S. I. Resnick. Preliminaries. In S. I. Resnick, editor, Extreme Values, Regular Variation and Point Processes, Springer Series in Operations Research and Financial Engineering, pages 1-37. Springer, New York, NY, 1987. MathSciNet: MR2364939 · Zbl 0633.60001
[72] C.J. Roy and W.L. Oberkampf. A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing. Computer Methods in Applied Mechanics and Engineering, 200(25):2131-2144, 2011. MathSciNet: MR2803123 · Zbl 1230.76049
[73] R.Y. Rubinstein. Sensitivity analysis and performance extrapolation for computer simulation models. Operation Research, 37(1):72-81, 1989.
[74] W. Samek, G. Montavon, A. Vedaldi, L. K. Hansen, and K-R. Müller, editors. Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, volume 11700 of Lecture Notes in Computer Science. Springer International Publishing, Cham, 2019.
[75] F. Santambrogio. Optimal Transport for Applied Mathematicians, volume 87 of Progress in Nonlinear Differential Equations and Their Applications. Springer International Publishing, Cham, 2015. MathSciNet: MR3409718 · Zbl 1401.49002
[76] J. W. Schmidt and W. Heß. Positivity of cubic polynomials on intervals and positive spline interpolation. BIT Numerical Mathematics, 28(2):340-352, 1988. MathSciNet: MR0938398 · Zbl 0642.41007
[77] R. C. Smith. Uncertainty Quantification: Theory, Implementation, and Applications. Computational Science & Engineering. SIAM, 2014. MathSciNet: MR3155184 · Zbl 1284.65019
[78] I.M Sobol. Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates. Mathematics and Computers in Simulation, 55(1):271-280, 2001. MathSciNet: MR1823119 · Zbl 1005.65004
[79] O. Sobrie, N. Gillis, V. Mousseau, and M. Pirlot. UTA-poly and UTA-splines: Additive value functions with polynomial marginals. European Journal of Operational Research, 264(2):405-418, 2018. MathSciNet: MR3704686 · Zbl 1376.91075
[80] E. Song, B. L. Nelson, and J. Staum. Shapley Effects for Global Sensitivity Analysis: Theory and Computation. SIAM/ASA Journal on Uncertainty Quantification, 4(1):1060-1083, 2016. MathSciNet: MR3544662 · Zbl 1403.62226
[81] A. Stevens, P. Deruyck, Z. Van Veldhoven, and J. Vanthienen. Explainability and Fairness in Machine Learning: Improve Fair End-to-end Lending for Kiva. In 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pages 1241-1248, 2020.
[82] T. Sullivan. Introduction to Uncertainty Quantification. Springer, 2017. MathSciNet: MR3364576
[83] Y. S. Taspinar, M. Koklu, and M. Altin. Classification of flame extinction based on acoustic oscillations using artificial intelligence methods. Case Studies in Thermal Engineering, 28:101561, December 2021.
[84] Y. S. Taspinar, M. Koklu, and M. Altin. Acoustic-Driven Airflow Flame Extinguishing System Design and Analysis of Capabilities of Low Frequency in Different Fuels. Fire Technology, 58(3):1579-1597, May 2022.
[85] N. Tripuraneni, B. Adlam, and J. Pennington. Overparameterization improves robustness to covariate shift in high dimensions. In 35th Conference on Neural Information Processing Systems (NeurIPS), 2021.
[86] C. Villani. Topics in Optimal Transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical Society, March 2003. MathSciNet: MR1964483 · Zbl 1106.90001
[87] G. Visani, E. Bagli, F. Chesani, A. Poluzzi, and D. Capuzzo. Statistical stability indices for LIME: Obtaining reliable explanations for machine learning models. Journal of the Operational Research Society, 73(1):91-101, 2022.
[88] X. Wang and F. Li. Isotonic Smoothing Spline Regression. Journal of Computational and Graphical Statistics, 17(1):21-37, 2008. MathSciNet: MR2424793
[89] M. Zondervan-Zwijnenburg, W. van de Schoot-Hubeek, K. Lek, H. Hoijtink, and R. van de Schoot. Application and Evaluation of an Expert Judgment Elicitation Procedure for Correlations. Frontiers in Psychology, 8:90, 2017.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.