×

Almost-reductive and almost-algebraic Leibniz algebra. (English) Zbl 07903866

Summary: This paper examines whether the concept of an almost-algebraic Lie algebra developed by Auslander and Brezin in [J. Algebra, 8(1968), 295313] can be introduced for Leibniz algebras. Two possible analogues are considered: almost-reductive and almost-algebraic Leibniz algebras. For Lie algebras these two concepts are the same, but that is not the case for Leibniz algebras, the class of almost-algebraic Leibniz algebras strictly containing that of the almost-reductive ones. Various properties of these two classes of algebras are obtained, together with some relationships between \(\phi\)-free, elementary, \(E\) algebras and \(A\)-algebras.

MSC:

17B05 Structure theory for Lie algebras and superalgebras
17B20 Simple, semisimple, reductive (super)algebras
17B30 Solvable, nilpotent (super)algebras
17B50 Modular Lie (super)algebras

References:

[1] L. Auslander and J. Brezin, Almost algebraic Lie algebras, J. Algebra, 8 (1968), 295-313. · Zbl 0197.03002
[2] Sh. A. Ayupov and B. A. Omirov, On Leibniz algebras, Algebra and operator theory, Tashkent (1997), Kluwer Academic Publishers, (1998), 1-12. · Zbl 0928.17001
[3] Sh. A. Ayupov, B. Omirov and I. Rakhimov, Leibniz Algebras-Structure and Classification, CRC Press, Boca Raton, 2020. · Zbl 1426.17001
[4] D. W. Barnes, Some theorems on Leibniz algebras, Comm. Algebra, 39(7) (2011), 2463-2472. · Zbl 1268.17001
[5] C. Batten, L. Bosko-Dunbar, A. Hedges, J. T. Hird, K. Stagg and E. Stitzinger, A Frattini theory for Leibniz algebras, Comm. Algebra, 41(4) (2013), 1547-1557. · Zbl 1272.17003
[6] J. Feldvoss, Leibniz algebras as non-associative algebras, Nonassociative math-ematics and its applications, Contemp. Math., 721 (2019), 115-149. · Zbl 1436.17004
[7] N. Jacobson, Lie Algebras, Interscience Tracts in Pure and Applied Mathe-matics, Interscience, New York-London, 1962. · Zbl 0121.27504
[8] M. Jibladze and T. Pirashvili, Lie theory for symmetric Leibniz algebras, J. Homotopy Relat. Struct., 15(1) (2020), 167-183. · Zbl 1477.17021
[9] S. Siciliano and D. A. Towers, On the subalgebra lattice of a Leibniz algebra, Comm. Algebra, 50(1) (2022), 255-267. · Zbl 1486.17004
[10] E. L. Stitzinger, Frattini subalgebras of a class of solvable Lie algebras, Pacific J. Math., 34 (1970), 177-182. · Zbl 0203.33801
[11] D. A. Towers, A Frattini theory for algebras, Proc. London Math. Soc. (3), 27 (1973), 440-462. · Zbl 0267.17004
[12] D. A. Towers, Solvable Lie A-algebras, J. Algebra, 340 (2011), 1-12. · Zbl 1260.17010
[13] D. A. Towers, Leibniz A-algebras, Commun. Math., 28(2) (2020), 103-121. · Zbl 1479.17007
[14] D. A. Towers, On the nilradical of a Leibniz algebra, Comm. Algebra, 49(10) (2021), 4345-4347. · Zbl 1484.17002
[15] D. A. Towers and V. R. Varea, Further results on elementary Lie algebras and Lie A-algebras, Comm. Algebra, 41(4) (2013), 1432-1441. · Zbl 1269.17003
[16] David A. Towers Department of Mathematics and Statistics Lancaster University Lancaster LA1 4YF, England e-mail: d.towers@lancaster.ac.uk
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.