×

Event-triggered sliding mode control for uncertain systems with multiple disturbances. (English) Zbl 07903842

Summary: A new event-triggered sliding mode anti-disturbance (ETSMAD) control scheme is presented for the uncertain linear systems encountered by multiple disturbances containing the modelled unmeasurable disturbances and unmodelled disturbances. On the sliding mode reaching stage and sliding stage, different event-triggered programmes are developed to reduce the communication transmission load between the system and controller. The SM control law based on the ET programme is established to achieve the compensation and suppression of the modelled unmeasurable disturbances and unmodelled disturbances, respectively. Meanwhile, the criteria are formed to ensure the robustness of the system. The efficiency of the established ETSMAD control strategy is confirmed by a turbofan system example.

MSC:

93C65 Discrete event control/observation systems
93B12 Variable structure systems
93C73 Perturbations in control/observation systems
93C41 Control/observation systems with incomplete information
93C05 Linear systems in control theory
Full Text: DOI

References:

[1] Abboudi, A., Bououden, S., Chadli, M., Boulkaibet, I., & Neji, B. (2022). Observer-based fault-tolerant predictive control for LPV systems with sensor faults: an active car suspension application. Applied Sciences, 12(2), 684.
[2] Behera, A. K., Bandyopadhyay, B., & Yu, X. (2018). Periodic event-triggered sliding mode control. Automatica, 96, 61-72. · Zbl 1406.93071
[3] Cao, S., Guo, L., & Ding, Z. (2021). Event-triggered anti-disturbance attitude control for rigid spacecrafts with multiple disturbances. International Journal of Robust and Nonlinear Control, 31(2), 344-357. · Zbl 1525.93235
[4] Chen, B., Zou, Y., & Niu, Y. (2022). Dynamic event-triggered sliding mode security control for Markovian jump systems: Learning-based iteration optimization method. International Journal of Robust and Nonlinear Control, 32(5), 2500-2517. · Zbl 1527.93268
[5] Chen, J., Zhuang, B., & Yu, Y. (2022). Asymptotic stabilisation of coupled delayed time fractional reaction diffusion systems with boundary input disturbances via backstepping sliding-mode control. International Journal of Systems Science, 53(14), 3112-3130. · Zbl 1517.93076
[6] Chen, T. L., & Wu, Y. C. (1992). An optimal variable structure control with integral compensation for electrohydraulic position servo control systems. IEEE Transactions on Industrial Electronics, 39(5), 460-463.
[7] Chen, W. H., Yang, J., Guo, L., & Li, S. (2015). Disturbance-observer-based control and related methods-an overview. IEEE Transactions on Industrial Electronics, 63(2), 1083-1095.
[8] Chern, T. L., & Wong, J. S. (1995). DSP based integral variable structure control for DC motor servo drivers. IEE Proceedings-Control Theory and Applications, 142(5), 444-450. · Zbl 0850.93491
[9] Chern, T. L., & Wu, Y. C. (1991, September). Design of integral variable structure controller and application to electrohydraulic velocity servosystems. In IEE proceedings D (control theory and applications) (Vol. 138, pp. 439-444). IET Digital Library.
[10] Chern, T. L., & Wu, Y. C. (1992, March). Integral variable structure control approach for robot manipulators. In IEE proceedings D (control theory and applications) (Vol. 139, pp. 161-166). IET Digital Library. · Zbl 0770.93081
[11] Chern, T. L., & Wu, Y. C. (1993, January). Design of brushless DC position servo systems using integral variable structure approach. In IEE proceedings B (electric power applications) (Vol. 140, pp. 27-34). IET Digital Library.
[12] Du, C., Li, F., Shi, Y., Yang, C., & Gui, W. (2023). Integral event-triggered attack-resilient control of aircraft-on-ground synergistic turning system with uncertain tire cornering stiffness. IEEE/CAA Journal of Automatica Sinica, 10(5), 1276-1287.
[13] Du, C., Shi, Y., Li, F., Yang, C., & Gui, W. (2022). An improved co-design method of dynamical controller and asynchronous integral-type event-triggered mechanisms. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 53(4), 2500-2509.
[14] Edwards, C., & Spurgeon, S. (1998). Sliding mode control: theory and applications. CRC Press.
[15] Fan, X., & Wang, Z. (2021). Event-triggered integral sliding mode control for fractional order T-S fuzzy systems via a fuzzy error function. International Journal of Robust and Nonlinear Control, 31(7), 2491-2508. · Zbl 1526.93148
[16] Gao, H., Shi, K., & Zhang, H. (2021). A novel event-triggered strategy for networked switched control systems. Journal of the Franklin Institute, 358(1), 251-267. · Zbl 1455.93117
[17] Hamayun, M. T., Edwards, C., & Alwi, H. (2013). A fault tolerant control allocation scheme with output integral sliding modes. Automatica, 49(6), 1830-1837. · Zbl 1360.93204
[18] Hamoudi, A., Djeghali, N., & Bettayeb, M. (2022). High-order sliding mode-based synchronisation of fractional-order chaotic systems subject to output delay and unknown disturbance. International Journal of Systems Science, 53(14), 2876-2900. · Zbl 1504.93331
[19] Han, Y., & Liu, X. (2016). Continuous higher-order sliding mode control with time-varying gain for a class of uncertain nonlinear systems. ISA Transactions, 62, 193-201.
[20] Hao, L. Y., Zhang, H., Li, T. S., Lin, B., & Chen, C. P. (2021). Fault tolerant control for dynamic positioning of unmanned marine vehicles based on TS fuzzy model with unknown membership functions. IEEE Transactions on Vehicular Technology, 70(1), 146-157.
[21] Jiang, J. L., Li, X. R., Du, J., & Wu, C. (2013). Study of active disturbance rejection control in aero-engine. Applied Mechanics and Materials, 344, 164-169.
[22] Li, J., Niu, Y., & Song, J. (2021). Finite-time boundedness of sliding mode control under periodic event-triggered strategy. International Journal of Robust and Nonlinear Control, 31(2), 623-639. · Zbl 1525.93376
[23] Liang, H., Chang, Z., & Ahn, C. K. (2023). Hybrid event-triggered intermittent control for nonlinear multi-agent systems. IEEE Transactions on Network Science and Engineering, 10(4), 1975-1984.
[24] Liu, L., Li, Z., Chen, Y., & Wang, R. (2022). Disturbance observer-based adaptive intelligent control of marine vessel with position and heading constraint condition related to desired output. IEEE Transactions on Neural Networks and Learning Systems, 1-9.
[25] Liu, M., Zhang, L., Shi, P., & Karimi, H. R. (2013). Robust control of stochastic systems against bounded disturbances with application to flight control. IEEE Transactions on Industrial Electronics, 61(3), 1504-1515.
[26] Liu, Y., Jia, T., Niu, Y., & Zou, Y. (2015). Design of sliding mode control for a class of uncertain switched systems. International Journal of Systems Science, 46(6), 993-1002. · Zbl 1312.93029
[27] Ma, R., Shi, P., & Wu, L. (2020). Dissipativity-based sliding-mode control of cyber-physical systems under denial-of-service attacks. IEEE Transactions on Cybernetics, 51(5), 2306-2318.
[28] Mousavi, S. H., & Marquez, H. J. (2016). Integral-based event triggering controller design for stochastic LTI systems via convex optimisation. International Journal of Control, 89(7), 1416-1427. · Zbl 1353.93070
[29] Radke, A., & Gao, Z. (2006, June). A survey of state and disturbance observers for practitioners. In 2006 American control conference (p. 6). IEEE.
[30] Sabanovic, A., & Izosimov, D. B. (1981). Application of sliding modes to induction motor control. IEEE Transactions on Industry Applications, 17(1), 41-49.
[31] Shen, H., Huang, Z., Cao, J., & Park, J. H. (2019). Exponential \(H_\infty\) filtering for continuous-time switched neural networks under persistent dwell-time switching regularity. IEEE Transactions on Cybernetics, 50(6), 2440-2449.
[32] Shi, P., Liu, M., & Zhang, L. (2015). Fault-tolerant sliding-mode-observer synthesis of Markovian jump systems using quantized measurements. IEEE Transactions on Industrial Electronics, 62(9), 5910-5918.
[33] Shtessel, Y., Edwards, C., Fridman, L., & Levant, A. (2014). Sliding mode control and observation (Vol. 10). Springer New York.
[34] Spurgeon, S. K. (2008). Sliding mode observers: a survey. International Journal of Systems Science, 39(8), 751-764. · Zbl 1283.93066
[35] Su, X., Liu, X., Shi, P., & Song, Y. D. (2018). Sliding mode control of hybrid switched systems via an event-triggered mechanism. Automatica, 90, 294-303. · Zbl 1387.93055
[36] Tanwani, A., Shim, H., & Liberzon, D. (2012). Observability for switched linear systems: Characterization and observer design. IEEE Transactions on Automatic Control, 58(4), 891-904. · Zbl 1369.93111
[37] Wang, G., Zhou, Y., Ni, L., & Aphale, S. S. (2023). Global fast non-singular terminal sliding-mode control for high-speed nanopositioning. ISA Transactions, 136, 560-570.
[38] Wang, J. D., Lee, T. L., & Juang, Y. T. (1996). New methods to design an integral variable structure controller. IEEE Transactions on Automatic Control, 41(1), 140-143. · Zbl 0842.93012
[39] Wang, Q., He, W., Zino, L., Tan, D., & Zhong, W. (2022). Bipartite consensus for a class of nonlinear multi-agent systems under switching topologies: A disturbance observer-based approach. Neurocomputing, 488, 130-143.
[40] Wei, X., Zhang, H. F., & Guo, L. (2009). Composite disturbance-observer-based control and terminal sliding mode control for uncertain structural systems. International Journal of Systems Science, 40(10), 1009-1017. · Zbl 1175.93056
[41] Xu, J., Zhang, K., Zhang, D., Wang, S., Zhu, Q., & Gao, X. (2022). Composite anti-disturbance landing control scheme for recovery of carrier-based UAVs. Asian Journal of Control, 24(4), 1744-1754. · Zbl 07887091
[42] Xu, Y., Wang, C., Qiao, J., & Guo, L. (2022). Safe approaching control for spacecraft rendezvous with disturbances: A positive system approach. Asian Journal of Control, 24(5), 2258-2272. · Zbl 07887134
[43] Yang, D., Li, T., Xie, X., & Zhang, H. (2019). Event-triggered integral sliding-mode control for nonlinear constrained-input systems with disturbances via adaptive dynamic programming. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(11), 4086-4096.
[44] Yao, D., Li, H., Lu, R., & Shi, Y. (2020). Distributed sliding-mode tracking control of second-order nonlinear multiagent systems: An event-triggered approach. IEEE Transactions on Cybernetics, 50(9), 3892-3902.
[45] Yi, Y., Zheng, W. X., & Liu, B. (2020). Adaptive anti-disturbance control for systems with saturating input via dynamic neural network disturbance modeling. IEEE Transactions on Cybernetics, 52(6), 5290-5300.
[46] Zhang, J., Feng, G., & Xia, Y. (2013). Design of estimator-based sliding-mode output-feedback controllers for discrete-time systems. IEEE Transactions on Industrial Electronics, 61(5), 2432-2440.
[47] Zhang, J., & Zheng, W. X. (2013). Design of adaptive sliding mode controllers for linear systems via output feedback. IEEE Transactions on Industrial Electronics, 61(7), 3553-3562.
[48] Zhao, Y., Gao, Y., Sang, H., & Yu, S. (2022). Event-triggered-based anti-disturbance switching control for switched T-S fuzzy systems. IEEE Transactions on Fuzzy Systems, 31(6), 1819-1829.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.