×

An unconditional Montgomery theorem for pair correlation of zeros of the Riemann zeta-function. (English) Zbl 07903822

Let \(\rho = \beta + i\gamma\) denote a nontrivial zero of the Riemann zeta-function \(\zeta(s)\) with \(\beta, \gamma \in \mathbb{R}\), that is, a zero satisfying \(\beta> 0\). The Montgomery pair correlation method relies on the function \(F(x,T)\) defined for \(x>0\) and \(T\geq 3\) by \[ F(x,T)=\sum_{\stackrel{\rho,\, \rho'}{0<\gamma,\, \gamma' \leq T}}x^{\rho-\rho'}W(\rho-\rho'), \] where \(W(u)=\frac{4}{4-u^2}\). The function \(F(x,T)\) can be normalized by defining for \(\alpha>0\) \[ F(\alpha)= \left(\frac{T}{2\pi}\log T \right)^{-1} F(T^\alpha, T). \] The main result of this paper is that unconditionally the function \(F(\alpha)\) is real, even, and nonnegative. Moreover, as \(T \to \infty\), we have \[ F(\alpha)=(T^{-2\alpha}\log T +\alpha)\left(1+O\left(\frac{1}{\sqrt{\log T}}\right) \right) \] uniformly for \(0\leq \alpha \leq 1\).
As consequence, if we suppose that all the zeros \(\rho=\beta+ i\gamma\) of the Riemann zeta-function with \(T^{3/8}< \gamma \leq T\) lie within the thin box \[ \frac{1}{2}-\frac{1}{2\log T}<\beta <\frac{1}{2}+\frac{1}{2\log T} \] then for any sufficiently large \(T > 0\), at least \(61.7\%\) of the nontrivial zeros are simple.
Note that the pair correlation method developed in this paper neither requires nor provides any information as to whether or not the nontrivial zeros of \(\zeta(s)\) satisfy \(\beta=1/2\).

MSC:

11M06 \(\zeta (s)\) and \(L(s, \chi)\)
11M26 Nonreal zeros of \(\zeta (s)\) and \(L(s, \chi)\); Riemann and other hypotheses

References:

[1] F. Aryan, On an extension of the Landau-Gonek formula, J. Number Theory 233 (2022), 389-404. · Zbl 1497.11195
[2] J. Bourgain, On large values estimates for Dirichlet polynomials and the density hypothesis for the Riemann zeta function, Int. Math. Res. Notices 2000, 133-146. · Zbl 1099.11511
[3] H. M. Bui and D. R. Heath-Brown, On simple zeros of the Riemann zeta-function, Bull. London Math. Soc. 45 (2013), 953-961. · Zbl 1291.11118
[4] A. Y. Cheer and D. A. Goldston, Simple zeros of the Riemann zeta-function, Proc. Amer. Math. Soc. 118 (1993), 365-372. · Zbl 0782.11024
[5] A. Chirre, F. Gonçalves, and D. de Laat, Pair correlation estimates for the zeros of the zeta function via semidefinite programming, Adv. Math. 361 (2020), art. 106926, 22 pp. · Zbl 1472.11230
[6] J. B. Conrey, A. Ghosh, and S. M. Gonek, Simple zeros of the Riemann zeta-function, Proc. London Math. Soc. 76 (1998), 497-522. · Zbl 0907.11025
[7] J. B. Conrey, H. Iwaniec, and K. Soundararajan, Critical zeros of Dirichlet L-functions, J. Reine Angew. Math. 681 (2013), 175-198. · Zbl 1357.11070
[8] D. A. Goldston, Large differences between consecutive prime numbers, Thesis, U.C. Berkeley, 1981, 75 pp.
[9] D. A. Goldston and H. L. Montgomery, Pair correlation of zeros and primes in short intervals, in: Analytic Number Theory and Diophantine Problems (Still-water, OK, 1984), A. C. Adolphson et al. (eds.), Progr. Math. 70, Birkhäuser, Boston, MA, 1987, 183-203. · Zbl 0629.10032
[10] A. E. Ingham, The Distribution of Prime Numbers, Cambridge Math. Library, Cambridge Univ. Press, Cambridge, 1990 (reprint of the 1932 original). · Zbl 0715.11045
[11] A. Ivić, The Riemann Zeta-Function, Wiley, New York, 1985. · Zbl 0556.10026
[12] H. Iwaniec and E. Kowalski, Analytic Number Theory, Amer. Math. Soc. Col-loq. Publ. 53, Amer. Math. Soc., Providence, RI, 2004. · Zbl 1059.11001
[13] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Teubner, Berlin, 1909. · JFM 40.0232.08
[14] A. Languasco, A. Perelli, and A. Zaccagnini, An extended pair-correlation con-jecture and primes in short intervals, Trans. Amer. Math. Soc. 369 (2017), 4235-4250. · Zbl 1422.11177
[15] H. L. Montgomery, The pair correlation of zeros of the zeta function, in: An-alytic Number Theory (St. Louis, MO, 1972), Proc. Sympos. Pure Math. 24, Amer. Math. Soc., Providence, RI, 1973, 181-193. · Zbl 0268.10023
[16] H. L. Montgomery, Distribution of the zeros of the Riemann zeta function, in: Proc. Int. Congress of Mathematicians (Vancouver, 1975), Vol. 1, Canad. Math. Congr., Montréal, QC, 1975, 379-381. · Zbl 0342.10020
[17] H. L. Montgomery and R. C. Vaughan, Multiplicative Number Theory I: Clas-sical Theory, Cambridge Stud. Adv. Math. 97, Cambridge Univ. Press, Cam-bridge, 2007. · Zbl 1142.11001
[18] K. Pratt, N. Robles, A. Zaharescu, and D. Zeindler, More than five-twelfths of the zeros of ζ are on the critical line, Results Math. Sci. 7 (2020), no. 1, art. 2, 74 pp. · Zbl 1505.11116
[19] A. Selberg, Old and new conjectures and results about a class of Dirichlet series, in: Collected Papers, Vol. II, Springer, Berlin, 1991, 47-63.
[20] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., Claren-don Press, New York, 1986. · Zbl 0601.10026
[21] K.-M. Tsang, The large values of the Riemann zeta-function, Mathematika 40 (1993), 203-214. · Zbl 0788.11036
[22] Siegfred Alan C. Baluyot American Institute of Mathematics Caltech 8-32
[23] Pasadena, CA 91125, USA E-mail: sbaluyot@aimath.org Ade Irma Suriajaya Faculty of Mathematics Kyushu University Fukuoka 819-0395, Japan E-mail: adeirmasuriajaya@math.kyushu-u.ac.jp Daniel Alan Goldston Department of Mathematics and Statistics San José State University San José, CA 95192-0103, USA E-mail: daniel.goldston@sjsu.edu Caroline L. Turnage-Butterbaugh Mathematics and Statistics Department Carleton College Northfield, MN 55057, USA E-mail: cturnageb@carleton.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.