×

Approximation of the set of integrable trajectories of the control system with \(L_2\) norm constraints on control functions. (English) Zbl 07903735

Summary: In this paper an approximation of the set of multivariable and \(L_2\) integrable trajectories of the control system described by Urysohn type integral equation is considered. It is assumed that the system is affine with respect to the control vector. The admissible control functions are chosen from the closed ball of the space \(L_2\), centered at the origin with radius \(\rho\). The set of admissible control functions is replaced, step by step, by the set of controls consisting of a finite number of piecewise-constant control functions. It is proved that under appropriate choosing of the discretization parameters, the set of trajectories generated by a finite number of piecewise-constant control functions is an internal approximation of the set of trajectories.

MSC:

93C23 Control/observation systems governed by functional-differential equations
93C35 Multivariable systems, multidimensional control systems
45G15 Systems of nonlinear integral equations

References:

[1] T. S. R. K. J. P. Angell George Sharma, Controllability of Urysohn integral inclusions of Volterra type, Electron. J. Diff. Equat., 79, 1-12, 2010 · Zbl 1195.93025
[2] J. P. Aubin and A. Cellina, Differential Inclusions. Set-Valued Maps and Viability Theory, Springer-Verlag, Berlin, 1984. · Zbl 0538.34007
[3] E. J. Balder, On existence problems for the optimal control of certain nonlinear integral equations of Urysohn type, J. Optim. Theory Appl., 42, 447-465, 1984 · Zbl 0534.49008 · doi:10.1007/BF00935326
[4] J. A. Banaś Chlebowicz, On integrable solutions of a nonlinear Volterra integral equation under Caratheodory conditions, Bull. Lond. Math. Soc., 41, 1073-1084, 2009 · Zbl 1191.47087 · doi:10.1112/blms/bdp088
[5] S. A. Belbas, A new method for optimal control of Volterra integral equations, Appl. Math. Comput., 189, 1902-1915, 2007 · Zbl 1124.65055 · doi:10.1016/j.amc.2006.12.077
[6] F. L. Chernousko, State Estimation for Dynamic Systems, 1993
[7] F. H. Clarke, Y. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer-Verlag, New York, 1998. · Zbl 1047.49500
[8] R. Conti, Problemi di Controllo e di Controllo Ottimale, UTET, Torino, 1974.
[9] C. Corduneanu, Integral Equations and Applications, 1991 · Zbl 0714.45002 · doi:10.1017/CBO9780511569395
[10] K. Deimling, Multivalued Differential Equations, D. Gruyter, Berlin, 1992. · Zbl 0760.34002
[11] A. F. Filippov, Differential Equations with Discontinuous Right-Hand Sides, Kluwer, Dordrecht, 1988. · Zbl 0664.34001
[12] Kh. G. A. S. Guseinov Nazlipinar, An algorithm for approximate calculation of the attainable sets of the nonlinear control systems with integral constraint on controls, Comput. Math. Appl., 62, 1887-1895, 2011 · Zbl 1231.93011 · doi:10.1016/j.camwa.2011.06.032
[13] M. I. I. V. Gusev Zykov, On extremal properties of the boundary points of reachable sets for control systems with integral constraints, Tr. Inst. Mat. Mekh. UrO RAN, 23, 103-115, 2017 · doi:10.1134/s0081543818020116
[14] A. N. K. G. Huseyin Huseyin Guseinov, Approximations of the image and integral funnel of the \(L_p\) balls under Urysohn type integral operator, Funct. Anal. Appl., 56, 269-281, 2022 · Zbl 07676195
[15] N. A. Huseyin Huseyin, On the compactness of the set of \(L_2\) trajectories of the control system, Nonlin. Anal. Model. Control, 23, 423-436, 2018 · Zbl 1418.49015 · doi:10.15388/na.2018.3.8
[16] N. A. K. G. Huseyin Huseyin Guseinov, Approximation of the set of trajectories of the nonlinear control system with limited control resources, Math. Model. Anal., 23, 152-166, 2018 · Zbl 1488.45021 · doi:10.3846/mma.2018.010
[17] N. A. K. G. Huseyin Huseyin Guseinov, Approximations of the set of trajectories and integral funnel of the non-linear control systems with \(L_p\) norm constraints on the control functions, IMA J. Math. Contr. Inform., 39, 1213-1231, 2022 · Zbl 1505.93098 · doi:10.1093/imamci/dnac028
[18] L. V. Kantorovich and G. P. Akilov, Functional Analysis, \(2^{nd}\) edition, Nauka, Moscow, 1977.
[19] M. I. S. Kerboua Bouacida Segni, Null controllability of \(\psi \)- Hilfer implicit fractional integro-differential equations with \(\psi \)-Hilfer fractional nonlocal conditions, Evol. Equ. Control Theory, 12, 1473-1491, 2023 · Zbl 1522.93035 · doi:10.3934/eect.2023021
[20] N. N. Krasovskii, Theory of Control of Motion: Linear Systems, Nauka, Moscow, 1968. · Zbl 0172.12702
[21] M. A. Krasnoselskii, P. P. Zabreiko, E. I. Pustylnik and P. E. Sobolevskii, Integral Operators in Spaces of Summable Functions, Noordhoff International Publishing, Leyden, 1976. · Zbl 0312.47041
[22] A. B. Kurzhanskii and P. Varaiya, Dynamics and Control of Trajectory Tubes. Theory and Computation, Birkhäuser, Cham, 2014. · Zbl 1336.93004
[23] V. S. A. A. Patsko Fedotov, The structure of the reachable set for a Dubins car with a strictly one-sided turn, Tr. Inst. Mat. Mekh. UrO RAN, 25, 171-187, 2019 · doi:10.21538/0134-4889-2019-25-3-171-187
[24] B. T. Polyak, Convexity of the reachable set of nonlinear systems under \(L_2\) bounded controls, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 11, 255-267, 2004 · Zbl 1050.93007
[25] P. P. L. D. Rousse Garoche Henrion, Parabolic set simulation for reachability analysis of linear time-invariant systems with integral quadratic constraint, European J. Contr., 58, 152-167, 2021 · Zbl 1458.93022 · doi:10.1016/j.ejcon.2020.08.002
[26] R. L. Wheeden and A. Zygmund, Measure and Integral. An Introduction to Real Analysis, M. Dekker, New York, 1977. · Zbl 0362.26004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.