×

Time rescaling of nonadiabatic transitions. (English) Zbl 07903684

Summary: Applying time-dependent driving is a basic way of quantum control. Driven systems show various dynamics as its time scale is changed due to the different amount of nonadiabatic transitions. The fast-forward scaling theory enables us to observe slow (or fast) time-scale dynamics during moderate time by applying additional driving. Here we discuss its application to nonadiabatic transitions. We derive mathematical expression of additional driving and also find a formula for calculating it. Moreover, we point out relation between the fast-forward scaling theory for nonadiabatic transitions and shortcuts to adiabaticity by counterdiabatic driving.

MSC:

81Qxx General mathematical topics and methods in quantum theory
81Vxx Applications of quantum theory to specific physical systems
81Pxx Foundations, quantum information and its processing, quantum axioms, and philosophy

References:

[1] S. Masuda and K. Nakamura, Fast-forward problem in quantum mechanics, Phys. Rev. A 78, 062108 (2008), doi:10.1103/PhysRevA.78.062108. · doi:10.1103/PhysRevA.78.062108
[2] S. Masuda and K. Nakamura, Fast-forward scaling theory, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 380, 20210278 (2022), doi:10.1098/RSTA.2021.0278. · doi:10.1098/RSTA.2021.0278
[3] S. Masuda and K. Nakamura, Acceleration of adiabatic quantum dynamics in electromag-netic fields, Phys. Rev. A 84, 043434 (2011), doi:10.1103/PhysRevA.84.043434. · doi:10.1103/PhysRevA.84.043434
[4] S. Masuda, Acceleration of adiabatic transport of interacting particles and rapid ma-nipulations of a dilute Bose gas in the ground state, Phys. Rev. A 86, 063624 (2012), doi:10.1103/PhysRevA.86.063624. · doi:10.1103/PhysRevA.86.063624
[5] S. Masuda and S. A. Rice, Rapid coherent control of population transfer in lattice systems, Phys. Rev. A 89, 033621 (2014), doi:10.1103/PhysRevA.89.033621. · doi:10.1103/PhysRevA.89.033621
[6] K. Takahashi, Fast-forward scaling in a finite-dimensional Hilbert space, Phys. Rev. A 89, 042113 (2014), doi:10.1103/PhysRevA.89.042113. · doi:10.1103/PhysRevA.89.042113
[7] S. Deffner, Shortcuts to adiabaticity: Suppression of pair production in driven Dirac dy-namics, New J. Phys. 18, 012001 (2015), doi:10.1088/1367-2630/18/1/012001. · Zbl 1457.82209 · doi:10.1088/1367-2630/18/1/012001
[8] C. Jarzynski, S. Deffner, A. Patra and Y. Subaşı, Fast forward to the classical adiabatic invariant, Phys. Rev. E 95, 032122 (2017), doi:10.1103/PhysRevE.95.032122. · doi:10.1103/PhysRevE.95.032122
[9] A. Patra and C. Jarzynski, Shortcuts to adiabaticity using flow fields, New J. Phys. 19, 125009 (2017), doi:10.1088/1367-2630/aa924c. · Zbl 1535.81032 · doi:10.1088/1367-2630/aa924c
[10] S. Masuda and K. Nakamura, Fast-forward of adiabatic dynamics in quantum mechanics, Proc. R. Soc. A: Math. Phys. Eng. Sci. 466, 1135 (2009), doi:10.1098/rspa.2009.0446. · Zbl 1195.81135 · doi:10.1098/rspa.2009.0446
[11] M. Demirplak and S. A. Rice, Adiabatic population transfer with control fields, J. Phys. Chem. A 107, 9937 (2003), doi:10.1021/jp030708a. · doi:10.1021/jp030708a
[12] M. V. Berry, Transitionless quantum driving, J. Phys. A: Math. Theor. 42, 365303 (2009), doi:10.1088/1751-8113/42/36/365303. · Zbl 1178.81055 · doi:10.1088/1751-8113/42/36/365303
[13] X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guéry-Odelin and J. G. Muga, Fast optimal frictionless atom cooling in harmonic traps: Shortcut to adiabaticity, Phys. Rev. Lett. 104, 063002 (2010), doi:10.1103/PhysRevLett.104.063002. · doi:10.1103/PhysRevLett.104.063002
[14] D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui, S. Martínez-Garaot and J. G. Muga, Shortcuts to adiabaticity: Concepts, methods, and applications, Rev. Mod. Phys. 91, 045001 (2019), doi:10.1103/RevModPhys.91.045001. · doi:10.1103/RevModPhys.91.045001
[15] E. Torrontegui, S. Martínez-Garaot, A. Ruschhaupt and J. G. Muga, Short-cuts to adiabaticity: Fast-forward approach, Phys. Rev. A 86, 013601 (2012), doi:10.1103/PhysRevA.86.013601. · doi:10.1103/PhysRevA.86.013601
[16] I. Setiawan, B. E. Gunara, S. Masuda and K. Nakamura, Fast forward of the adiabatic spin dynamics of entangled states, Phys. Rev. A 96, 052106 (2017), doi:10.1103/PhysRevA.96.052106. · doi:10.1103/PhysRevA.96.052106
[17] K. Takahashi, Transitionless quantum driving for spin systems, Phys. Rev. E 87, 062117 (2013), doi:10.1103/PhysRevE.87.062117. · doi:10.1103/PhysRevE.87.062117
[18] M. Kolodrubetz, D. Sels, P. Mehta and A. Polkovnikov, Geometry and non-adiabatic response in quantum and classical systems, Phys. Rep. 697, 1 (2017), doi:10.1016/J.PHYSREP.2017.07.001. · Zbl 1370.81083 · doi:10.1016/J.PHYSREP.2017.07.001
[19] W. Rossmann, Lie Groups: An introduction through linear groups, Oxford University Press, Oxford, UK, ISBN 9780198596837 (2002). · Zbl 0989.22001
[20] D. Sels and A. Polkovnikov, Minimizing irreversible losses in quantum systems by local counterdiabatic driving, Proc. Natl. Acad. Sci. 114, E3909 (2017), doi:10.1073/pnas.1619826114. · Zbl 1404.81128 · doi:10.1073/pnas.1619826114
[21] P. W. Claeys, M. Pandey, D. Sels and A. Polkovnikov, Floquet-engineering counterdia-batic protocols in quantum many-body systems, Phys. Rev. Lett. 123, 090602 (2019), doi:10.1103/PhysRevLett.123.090602. · doi:10.1103/PhysRevLett.123.090602
[22] T. Hatomura and K. Takahashi, Controlling and exploring quantum systems by al-gebraic expression of adiabatic gauge potential, Phys. Rev. A 103, 012220 (2021), doi:10.1103/PhysRevA.103.012220. · doi:10.1103/PhysRevA.103.012220
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.