×

Special transition and extraordinary phase on the surface of a two-dimensional quantum Heisenberg antiferromagnet. (English) Zbl 07903660

Summary: Continuous phase transitions exhibit richer critical phenomena on the surface than in the bulk, because distinct surface universality classes can be realized at the same bulk critical point by tuning the surface interactions. The exploration of surface critical behavior provides a window looking into higher-dimensional boundary conformal field theories. In this work, we study the surface critical behavior of a two-dimensional (2D) quantum critical Heisenberg model by tuning the surface coupling strength, and discover a direct special transition on the surface from the ordinary phase into an extraordinary phase. The extraordinary phase has a long-range antiferromagnetic order on the surface, in sharp contrast to the logarithmic decaying spin correlations in the 3D classical O(3) model. The special transition point has a new set of critical exponents, \(y_s = 0.86(4)\) and \(\eta_\parallel = -0.33(1)\), which are distinct from the special transition of the classical O(3) model and indicate a new surface universality class of the 3D O(3) Wilson-Fisher theory.

MSC:

81Txx Quantum field theory; related classical field theories
82Cxx Time-dependent statistical mechanics (dynamic and nonequilibrium)
81Qxx General mathematical topics and methods in quantum theory

References:

[1] K. Binder, Critical behavior at surfaces, in Phase transitions and critical phenomena, Aca-demic Press, London, UK, ISBN 9780122203084 (1983).
[2] H. W. Diehl, Field-theoretical approach to critical behaviour at surfaces, in Phase transitions and critical phenomena, Academic Press, London, UK, ISBN 9780122203107 (1986).
[3] J. L. Cardy, Conformal invariance and surface critical behavior, Nucl. Phys. B 240, 514 (1984), doi:10.1016/0550-3213(84)90241-4. · doi:10.1016/0550-3213(84)90241-4
[4] J. L. Cardy, Effect of boundary conditions on the operator content of two-dimensional conformally invariant theories, Nucl. Phys. B 275, 200 (1986), doi:10.1016/0550-3213(86)90596-1. · doi:10.1016/0550-3213(86)90596-1
[5] J. L. Cardy, Boundary conditions, fusion rules and the Verlinde formula, Nucl. Phys. B 324, 581 (1989), doi:10.1016/0550-3213(89)90521-X. · doi:10.1016/0550-3213(89)90521-X
[6] L. Rastelli and X. Zhou, The Mellin formalism for boundary CFT d, J. High Energy Phys. 10, 146 (2017), doi:10.1007/JHEP10(2017)146. · Zbl 1383.81254 · doi:10.1007/JHEP10(2017)146
[7] D. Mazáč, L. Rastelli and X. Zhou, An analytic approach to BCFTd, J. High Energy Phys. 12, 004 (2019), doi:10.1007/JHEP12(2019)004. · Zbl 1431.81139 · doi:10.1007/JHEP12(2019)004
[8] P. Liendo, L. Rastelli and B. C. van Rees, The bootstrap program for boundary CFT d, J. High Energy Phys. 07, 113 (2013), doi:10.1007/JHEP07(2013)113. · Zbl 1342.81504 · doi:10.1007/JHEP07(2013)113
[9] F. Gliozzi, P. Liendo, M. Meineri and A. Rago, Boundary and interface CFTs from the con-formal bootstrap, J. High Energy Phys. 05, 036 (2015), doi:10.1007/JHEP05(2015)036. · Zbl 1388.81150 · doi:10.1007/JHEP05(2015)036
[10] L. Zhang and F. Wang, Unconventional surface critical behavior induced by a quantum phase transition from the two-dimensional Affleck-Kennedy-Lieb-Tasaki phase to a Néel-ordered phase, Phys. Rev. Lett. 118, 087201 (2017), doi:10.1103/PhysRevLett.118.087201. · doi:10.1103/PhysRevLett.118.087201
[11] C. Ding, L. Zhang and W. Guo, Engineering surface critical behavior of (2 + 1)-dimensional O(3) quantum critical points, Phys. Rev. Lett. 120, 235701 (2018), doi:10.1103/PhysRevLett.120.235701. · doi:10.1103/PhysRevLett.120.235701
[12] L. Weber, F. Parisen Toldin and S. Wessel, Nonordinary edge criticality of two-dimensional quantum critical magnets, Phys. Rev. B 98, 140403 (2018), doi:10.1103/PhysRevB.98.140403. · doi:10.1103/PhysRevB.98.140403
[13] W. Zhu, C. Ding, L. Zhang and W. Guo, Surface critical behavior of coupled Haldane chains, Phys. Rev. B 103, 024412 (2021), doi:10.1103/PhysRevB.103.024412. · doi:10.1103/PhysRevB.103.024412
[14] L. Weber and S. Wessel, Nonordinary criticality at the edges of planar spin-1 Heisenberg antiferromagnets, Phys. Rev. B 100, 054437 (2019), doi:10.1103/PhysRevB.100.054437. · doi:10.1103/PhysRevB.100.054437
[15] Y. Deng, H. W. J. Blöte and M. P. Nightingale, Surface and bulk transi-tions in three-dimensional O(n) models, Phys. Rev. E 72, 016128 (2005), doi:10.1103/PhysRevE.72.016128. · doi:10.1103/PhysRevE.72.016128
[16] Y. Deng, Bulk and surface phase transitions in the three-dimensional O(4) spin model, Phys. Rev. E 73, 056116 (2006), doi:10.1103/PhysRevE.73.056116. · doi:10.1103/PhysRevE.73.056116
[17] M. Metlitski, Boundary criticality of the O(N) model in d = 3 critically revisited, SciPost Phys. 12, 131 (2022), doi:10.21468/SciPostPhys.12.4.131. · doi:10.21468/SciPostPhys.12.4.131
[18] J. Padayasi, A. Krishnan, M. Metlitski, I. Gruzberg and M. Meineri, The extraordinary boundary transition in the 3d O(N) model via conformal bootstrap, SciPost Phys. 12, 190 (2022), doi:10.21468/SciPostPhys.12.6.190. · doi:10.21468/SciPostPhys.12.6.190
[19] F. Parisen Toldin, Boundary critical behavior of the three-dimensional Heisenberg univer-sality class, Phys. Rev. Lett. 126, 135701 (2021), doi:10.1103/PhysRevLett.126.135701. · doi:10.1103/PhysRevLett.126.135701
[20] F. P. Toldin and M. A. Metlitski, Boundary criticality of the 3D O(N) model: From normal to extraordinary, Phys. Rev. Lett. 128, 215701 (2022), doi:10.1103/PhysRevLett.128.215701. · doi:10.1103/PhysRevLett.128.215701
[21] M. Hu, Y. Deng and J.-P. Lv, Extraordinary-log surface phase transition in the three-dimensional X Y model, Phys. Rev. Lett. 127, 120603 (2021), doi:10.1103/PhysRevLett.127.120603. · doi:10.1103/PhysRevLett.127.120603
[22] C.-M. Jian, Y. Xu, X.-C. Wu and C. Xu, Continuous Néel-VBS quantum phase transition in non-local one-dimensional systems with SO(3) symmetry, SciPost Phys. 10, 033 (2021), doi:10.21468/SciPostPhys.10.2.033. · doi:10.21468/SciPostPhys.10.2.033
[23] M. Matsumoto, C. Yasuda, S. Todo and H. Takayama, Ground-state phase diagram of quantum Heisenberg antiferromagnets on the anisotropic dimerized square lattice, Phys. Rev. B 65, 014407 (2001), doi:10.1103/PhysRevB.65.014407. · doi:10.1103/PhysRevB.65.014407
[24] S. Wenzel, L. Bogacz and W. Janke, Evidence for an unconventional universality class from a two-dimensional dimerized quantum Heisenberg model, Phys. Rev. Lett. 101, 127202 (2008), doi:10.1103/PhysRevLett.101.127202. · doi:10.1103/PhysRevLett.101.127202
[25] N. Ma, P. Weinberg, H. Shao, W. Guo, D.-X. Yao and A. W. Sandvik, Anomalous quantum-critical scaling corrections in two-dimensional antiferromagnets, Phys. Rev. Lett. 121, 117202 (2018), doi:10.1103/PhysRevLett.121.117202. · doi:10.1103/PhysRevLett.121.117202
[26] A. W. Sandvik, Ground state projection of quantum spin systems in the valence-bond basis, Phys. Rev. Lett. 95, 207203 (2005), doi:10.1103/PhysRevLett.95.207203. · doi:10.1103/PhysRevLett.95.207203
[27] A. W. Sandvik and H. G. Evertz, Loop updates for variational and projector quantum Monte Carlo simulations in the valence-bond basis, Phys. Rev. B 82, 024407 (2010), doi:10.1103/PhysRevB.82.024407. · doi:10.1103/PhysRevB.82.024407
[28] M. P. Nightingale, Transfer matrices, phase transitions, and critical phenomena: Numeri-cal methods and applications, in Finite size scaling and numerical simulation of statistical systems, World Scientific, Singapore, ISBN 9789810201081 (1990), doi:10.1142/1011. · doi:10.1142/1011
[29] M. N. Barber, Finite-size scaling, in Phase transitions and critical phenomena, Academic Press, London, UK, ISBN 9780122203084 (1983).
[30] M. Hasenbusch, Monte Carlo study of a generalized icosahedral model on the simple cubic lattice, Phys. Rev. B 102, 024406 (2020), doi:10.1103/PhysRevB.102.024406. · doi:10.1103/PhysRevB.102.024406
[31] K. E. Newman and E. K. Riedel, Critical exponents by the scaling-field method: The isotropic N-vector model in three dimensions, Phys. Rev. B 30, 6615 (1984), doi:10.1103/PhysRevB.30.6615. · doi:10.1103/PhysRevB.30.6615
[32] Q. Liu, Y. Deng, T. M. Garoni and H. W. J. Blöte, The O(n) loop model on a three-dimensional lattice, Nucl. Phys. B 859, 107 (2012), doi:10.1016/j.nuclphysb.2012.01.026. · Zbl 1246.82083 · doi:10.1016/j.nuclphysb.2012.01.026
[33] H. W. Diehl and S. Dietrich, Field-theoretical approach to multicritical behavior near free surfaces, Phys. Rev. B 24, 2878 (1981), doi:10.1103/PhysRevB.24.2878. · doi:10.1103/PhysRevB.24.2878
[34] K. G. Wilson, Feynman-graph expansion for critical exponents, Phys. Rev. Lett. 28, 548 (1972), doi:10.1103/PhysRevLett.28.548. · doi:10.1103/PhysRevLett.28.548
[35] L.-R. Zhang, C. Ding, Y. Deng and L. Zhang, Surface criticality of the antiferromagnetic Potts model, Phys. Rev. B 105, 224415 (2022), doi:10.1103/PhysRevB.105.224415. · doi:10.1103/PhysRevB.105.224415
[36] L.-R. Zhang, C. Ding, W. Zhang and L. Zhang, Sublattice extraordinary-log phase and special points of the antiferromagnetic Potts model, Phys. Rev. B 108, 024402 (2023), doi:10.1103/PhysRevB.108.024402. · doi:10.1103/PhysRevB.108.024402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.