×

Exponential stability of impulsive neutral stochastic functional differential equations with Markovian switching. (English) Zbl 07903283

Summary: The aim of this paper is to the discussion of the exponential stability of a class of impulsive neutral stochastic functional differential equations with Markovian switching. Under the influence of impulsive disturbance, the solution for the system is discontinuous. By using the Razumikhin technique and stochastic analysis approaches, as well as combining the idea of mathematical induction and classification discussion, some sufficient conditions for the \(p\)th moment exponential stability and almost exponential stability of the systems are obtained. The stability conclusion is full time-delay. The results show that impulse, the point distance of impulse and Markovain switching affect the stability for the system. Finally, two examples are provided to illustrate the effectiveness of the results proposed.

MSC:

93D23 Exponential stability
93E15 Stochastic stability in control theory
93C23 Control/observation systems governed by functional-differential equations
34K40 Neutral functional-differential equations
34K45 Functional-differential equations with impulses
34K50 Stochastic functional-differential equations
Full Text: DOI

References:

[1] Hale, J. K.; Meyer, K. R., A class of functional equations of neutral type, Memoirs of the American Mathematical Society, 76, 1-65 (1967) · Zbl 0179.20501
[2] Kolmanovskii, V. B.; Nosov, V. R., Stability and Periodic Modes of Control Systems with Aftereffect (1981), Moscow: Nauka, Moscow
[3] Hale, J. K.; Lunel, S. M V., Introduction to Functional Differential Equations (1993), New York: Springer-Verlag, New York · Zbl 0787.34002 · doi:10.1007/978-1-4612-4342-7
[4] Yang, X. T., On the periodic solution of neutral functional differential equations, Journal of Systems Science & Complexity, 26, 6, 684-692 (2006) · Zbl 1133.34038
[5] Kolmanovskii, V. B.; Nosov, V. R., Stability of Functional Differential Equations (1986), New York: Academic Press, New York · Zbl 0593.34070
[6] Pavlović, G.; Janković, S., The Razumikhin approach on general decay stability for neutral stochastic functional differential equations, Journal of the Franklin Institute, 350, 8, 2124-2145 (2013) · Zbl 1293.93766 · doi:10.1016/j.jfranklin.2013.05.025
[7] Huang, L. R.; Deng, F. Q., Razumikhin-type theorems on stability of neutral stochastic functional differential equations, IEEE Transactions on Automatic Control, 53, 7, 1718-1723 (2008) · Zbl 1367.34096 · doi:10.1109/TAC.2008.929383
[8] Chen, H. B.; Wang, L., New result on exponential stability for neutral stochastic linear system with time-varying delay, Applied Mathematics and Computation, 239, 320-325 (2014) · Zbl 1334.60102 · doi:10.1016/j.amc.2014.04.047
[9] Mao, X. R., Exponential stability in mean square of neutral stochastic differential functional equations, Systems & Control Letters, 26, 245-251 (1995) · Zbl 0877.93133 · doi:10.1016/0167-6911(95)00018-5
[10] Mao, X. R., Stochastic Differential Equations and Applications (2007), England: Horwood, England · Zbl 1138.60005
[11] Luo, Q.; Mao, X. R.; Shen, Y., New criteria on exponential stability of neutral stochastic differential delay equations, Systems & Control Letters, 55, 10, 826-834 (2006) · Zbl 1100.93048 · doi:10.1016/j.sysconle.2006.04.005
[12] Randjelović, J.; Janković, S., On the pth moment exponential stability criteria of neutral stochastic functional differential equations, Journal of Mathematical Analysis and Applications, 326, 266-280 (2007) · Zbl 1115.60065 · doi:10.1016/j.jmaa.2006.02.030
[13] Janković, S.; Randjelović, J.; Janković, M., Razumikhin-type exponential stability criteria of neutral stochastic functional differential equations, Journal of Mathematical Analysis and Applications, 355, 811-820 (2009) · Zbl 1166.60040 · doi:10.1016/j.jmaa.2009.02.011
[14] Chen, Y.; Zheng, W. X.; Xue, A., A new result on stability analysis for stochastic neutral systems, Automatica, 46, 12, 2100-2104 (2010) · Zbl 1205.93160 · doi:10.1016/j.automatica.2010.08.007
[15] Cheng, P.; He, S. P.; Luan, XL, Finite-region asynchronous H_∞ control for 2D Markov jump systems, Automatica, 129, 109590 (2021) · Zbl 1478.93143 · doi:10.1016/j.automatica.2021.109590
[16] Ren, C. C.; He, S. P.; Luan, X. L., Finite-time L_2-gain asynchronous control for continuous-time positive hidden Markov jump systems via T-S fuzzy model approach, IEEE Transactions on Cybernetics, 51, 1, 77-87 (2021) · doi:10.1109/TCYB.2020.2996743
[17] Kolmanovskii, V.; Koroleva, N.; Maizenberg, T., Neutral stochastic differential delay equations with Markovian switching, Stochastic Analysis and Applications, 21, 4, 839-867 (2003) · Zbl 1025.60028 · doi:10.1081/SAP-120022865
[18] Zhou, S. B.; Hu, S. G., Razumikhin-type theorems of neutral stochastic functional differential equations, Acta Mathematica Scientia, 29B, 1, 181-190 (2009) · Zbl 1199.34432
[19] Rakkiyappan, R.; Zhu, Q. X.; Chandrasekar, A., Stability of stochastic neural networks of neutral type with Markovian jumping parameters: A delay-fractioning approach, Journal of the Franklin Institute, 351, 3, 1553-1570 (2014) · Zbl 1395.93570 · doi:10.1016/j.jfranklin.2013.11.017
[20] Xu, Y.; He, Z. M., Exponential stability of neutral stochastic delay differential equations with Markovian switching, Applied Mathematics Letters, 52, 64-73 (2016) · Zbl 1356.60093 · doi:10.1016/j.aml.2015.08.019
[21] Caraballo, T.; Mchiri, L.; Rhaima, M., Partial practical exponential stability of neutral stochastic functional differential equations with Markovian switching, Mediterranean Journal of Mathematics, 18, 4, 1-26 (2021) · Zbl 1480.60153 · doi:10.1007/s00009-021-01786-6
[22] Song, R. L.; Lu, B. L.; Zhu, Q. X., Stability of a class of neutral stochastic functional differential equations with Markovian switching, IET Control Theory & Applications, 12, 15, 2043-2054 (2018) · doi:10.1049/iet-cta.2017.0806
[23] Xu, D. Y.; Yang, Z. C., Impulsive delay differential inequality and stability of neural networks, Journal of Mathematical Analysis and Applications, 305, 1, 107-120 (2005) · Zbl 1091.34046 · doi:10.1016/j.jmaa.2004.10.040
[24] Li, C. G.; Chen, L. N.; Aihara, K., Impulsive control of stochastic systems with applications in chaos control, chaos synchronization, and neural networks, Chaos, 18, 2, 023132 (2008) · Zbl 1307.93378 · doi:10.1063/1.2939483
[25] Stamova, I. M.; Stamov, T. G., Asymptotic stability of impulsive control neutral-type systems, International Journal of Control, 87, 1, 25-31 (2014) · Zbl 1317.93221 · doi:10.1080/00207179.2013.819590
[26] Peng, S. G.; Zhang, Y., Razumikhin-type theorems on pth moment exponential stability of impulsive stochastic delay differential equations, IEEE Transactions on Automatic Control, 55, 8, 1917-1922 (2010) · Zbl 1368.93771 · doi:10.1109/TAC.2010.2049775
[27] Hu, W.; Zhu, Q. X., Exponential stability of stochastic differential equations with impulse effects at random times, Asian Journal of Control, 22, 2, 779-787 (2020) · Zbl 07872623 · doi:10.1002/asjc.1937
[28] Guo, Y. X.; Zhu, Q. X.; Wang, F., Stability analysis of impulsive stochastic functional differential equations, Communications in Nonlinear Science and Numerical Simulation, 82, 105013 (2020) · Zbl 1457.34121 · doi:10.1016/j.cnsns.2019.105013
[29] Yu, G. S., On the pth moment exponential stability criteria of neutral stochastic functional differential equations with jumps, Acta Mathematicae Applicatae Sinica-English Series, 22, 1, 148-154 (2009) · Zbl 1199.60228
[30] Benhadri, M.; Caraballo, T.; Halim, Z., Existence of solutions and stability for impulsive neutral stochastic functional differential equations, Stochastic Analysis and Applications, 37, 5, 777-798 (2019) · Zbl 1490.34101 · doi:10.1080/07362994.2019.1611449
[31] Fu, X. Z.; Zhu, Q. X., Exponential stability of neutral stochastic delay differential equation with delay-dependent impulses, Applied Mathematics and Computation, 377, 125146 (2020) · Zbl 1508.93249 · doi:10.1016/j.amc.2020.125146
[32] Yu, G. S.; Yang, W. Q.; Xu, L., Pth moment and almost sure exponential stability of impulsive neutral stochastic functional differential equations with Markovian switching, International Journal of Systems Science, 49, 6, 1164-1177 (2018) · Zbl 1482.93519 · doi:10.1080/00207721.2018.1441467
[33] Mchiri, L.; Rhaima, M., β-stability in q-th moment of neutral impulsive stochastic functional differential equations with Markovian switching, Mathematical Problems in Engineering, 2021, 1, 1-11 (2021) · Zbl 1512.60036 · doi:10.1155/2021/9975897
[34] Wu, X. T.; Zhang, W. B.; Tang, Y., Pth moment stability of impulsive stochastic delay differential systems with Markovian switching, Communications in Nonlinear Science and Numerical Simulation, 18, 7, 1870-1879 (2013) · Zbl 1291.35432 · doi:10.1016/j.cnsns.2012.12.001
[35] Cheng, P.; Deng, F. Q.; Yao, F. Q., Exponential stability analysis of impulsive stochastic functional differential systems with delayed impulses, Communications in Nonlinear Science and Numerical Simulation, 19, 6, 2104-2114 (2014) · Zbl 1457.34120 · doi:10.1016/j.cnsns.2013.10.008
[36] Gao, L. J.; Wang, D. D.; Zong, G. D., Exponential stability for generalized stochastic impulsive functional differential equations with delayed impulses and Markovian switching, Nonlinear Analysis: Hybrid Systems, 30, 199-212 (2018) · Zbl 1408.93137
[37] Skorohod A V, Asymptotic Methods in the Theory of Stochastic Differential Equations, American Mathematical Society, Providence, RI, 1989. · Zbl 0695.60055
[38] Zhu, Q. X., Pth moment exponential stability of impulsive stochastic functional differential equations with Markovian switching, Journal of the Franklin Institute, 351, 7, 3965-3986 (2014) · Zbl 1290.93205 · doi:10.1016/j.jfranklin.2014.04.001
[39] Kao, Y. G.; Zhu, Q. X.; Qi, W. H., Exponential stability and instability of impulsive stochastic functional differential equations with Markovian switching, Applied Mathematics and Computation, 271, 795-804 (2015) · Zbl 1410.34213 · doi:10.1016/j.amc.2015.09.063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.