×

The perturbation method applied to a robust optimization problem with constraint. (English) Zbl 07903126

Summary: The present paper studies a kind of robust optimization problems with constraint. The problem is formulated through backward stochastic differential equations (BSDEs) with quadratic generators. A necessary condition is established for the optimal solution using a terminal perturbation method and properties of bounded mean oscillation (BMO) martingales. The necessary condition is further proved to be sufficient for the existence of an optimal solution under an additional convexity assumption. Finally, the optimality condition is applied to discuss problems of partial hedging with ambiguity, fundraising under ambiguity and randomized testing problems for a quadratic \(g\)-expectation.

MSC:

91G15 Financial markets
93E20 Optimal stochastic control
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)

References:

[1] Barrieu, P.; El Karoui, N., Monotone stability of quadratic semimartingales with applications to unbounded general quadratic BSDEs, Ann. Probab., 41, 1831-1863, 2013 · Zbl 1312.60052 · doi:10.1214/12-AOP743
[2] Bernard, C.; Ji, S.; Tian, W., An optimal insurance design problem under Knightian uncertainty, Dec. Econ. Finan., 36, 2, 99-124, 2013 · Zbl 1277.91075 · doi:10.1007/s10203-012-0127-5
[3] Bordigoni, G., Matoussi, A., Schweizer, M.: A stochastic control approach to a robust utility maximization problem. In: Stochastic Analysis and Applications (pp. 125-151). Springer, Berlin, Heidelberg (2007) · Zbl 1130.93056
[4] Briand, P.; Elie, R., A simple constructive approach to quadratic BSDEs with or without delay, Stoch. Process. Appl., 123, 2921-2939, 2013 · Zbl 1294.60092 · doi:10.1016/j.spa.2013.02.013
[5] Chen, Z., Epstein, L.: Ambiguity, risk, and asset returns in continuous time. Econometrica 70(4), 1403-1443 (2002) · Zbl 1121.91359
[6] Chen, Z.; Kulperger, R., Minimax pricing and Choquet pricing, Insur.: Math. Econ., 38, 3, 518-528, 2006 · Zbl 1168.60355
[7] Chen, Z.; Chen, T.; Davison, M., Choquet expectation and Peng’s g-expectation, Ann. Probab., 33, 3, 1179-1199, 2005 · Zbl 1066.60054 · doi:10.1214/009117904000001053
[8] Cong, J., Tan, K.S., Weng, C.: Conditional value-at-risk-based optimal partial hedging. J. Risk 16(3), 49-83 (2014)
[9] Cong, J.; Tan, KS; Weng, C., VaR-based optimal partial hedging, Astin Bull., 43, 3, 271-299, 2013 · Zbl 1281.91142 · doi:10.1017/asb.2013.19
[10] Cvitanic, J.; Karatzas, I., Generalized Neyman-Pearson lemma via convex duality, Bernoulli, 7, 79-97, 2001 · Zbl 1054.62056 · doi:10.2307/3318603
[11] Delbaen, F.; Peng, S.; Rosazza Gianin, E., Representation of the penalty term of dynamic concave utilities, Finance Stoch., 14, 3, 449-472, 2010 · Zbl 1226.91025 · doi:10.1007/s00780-009-0119-7
[12] El Karoui, N., Peng, S., Quenez, M.C.: A dynamic maximum principle for the optimization of recursive utilities under constraints. Ann. Appl. Probab. 664-693 (2001) · Zbl 1040.91038
[13] Embrechts, P.; Schied, A.; Wang, R., Robustness in the optimization of risk measures, Oper. Res., 70, 1, 95-110, 2022 · Zbl 1485.90079 · doi:10.1287/opre.2021.2147
[14] Faidi, W.; Matoussi, A.; Mnif, M., Maximization of recursive utilities. A dynamic maximum principle approach, SIAM J. Financ. Math., 2, 1014-1041, 2011 · Zbl 1239.91189 · doi:10.1137/100814354
[15] Faidi, W.; Mezghanni, H.; Mnif, M., Expected utility maximization problem under state constraints and model uncertainty, J. Optim. Theory Appl., 183, 3, 1123-52, 2019 · Zbl 1442.91033 · doi:10.1007/s10957-019-01583-y
[16] Föllmer, H., Schied, A., Weber, S.: Robust preferences and robust portfolio choice. In: Ciarlet, P., Bensoussan, A., Zhang, Q. (eds.) Mathematical Modelling and Numerical Methods in Finance, vol. 15, pp. 29-88. Handbook of Numerical Analysis (2009) · Zbl 1180.91274
[17] Föllmer, H.; Leukert, P., Quantile hedging, Financ. Stoch., 3, 3, 251-273, 1999 · Zbl 0977.91019 · doi:10.1007/s007800050062
[18] He, K.; Hu, M.; Chen, Z., The relationship between risk measures and choquet expectations in the framework of g-expectations, Stat. Probab. Lett., 79, 4, 508-512, 2009 · Zbl 1165.91418 · doi:10.1016/j.spl.2008.09.025
[19] Ji, S., Dual method for continuous-time Markowitz’s problems with nonlinear wealth equations, J. Math. Anal. Appl., 366, 1, 90-100, 2010 · Zbl 1220.91034 · doi:10.1016/j.jmaa.2010.01.044
[20] Ji, S.; Peng, S., Terminal perturbation method for the backward approach to continuous time mean-variance portfolio selection, Stoch. Process. Appl., 118, 6, 952-967, 2008 · Zbl 1152.60051 · doi:10.1016/j.spa.2007.07.005
[21] Ji, S.; Zhou, XY, A maximum principle for stochastic optimal control with terminal state constraints, and its applications, Commun. Inf. Syst., 6, 4, 321-338, 2006 · Zbl 1132.93050 · doi:10.4310/CIS.2006.v6.n4.a4
[22] Ji, S.; Zhou, XY, A generalized Neyman-Pearson lemma for g-probabilities, Probab. Theory Relat. Fields, 148, 3-4, 645-669, 2010 · Zbl 1197.93163 · doi:10.1007/s00440-009-0244-4
[23] Jiang, L.: Convexity, translation invariance and subadditivity for G-expectations and related risk measures. Ann. Appl. Probab. 18(1), 245-258 (2008) · Zbl 1145.60032
[24] Kazamaki, N.: Continuous exponential martingales and BMO. In: Lecture Notes in Mathematics, vol. 1570. Springer, Berlin (1994) · Zbl 0806.60033
[25] Kobylanski, M., Backward stochastic differential equations and partial differential equations with quadratic growth, Ann. Probab., 28, 2, 558-602, 2000 · Zbl 1044.60045 · doi:10.1214/aop/1019160253
[26] Kulldorff, M., Optimal control of favorable games with a time limit, SIAM J. Control. Optim., 31, 52-69, 1993 · Zbl 0770.90099 · doi:10.1137/0331005
[27] Kupper, M.; Schachermayer, W., Representation results for law invariant time consistent functions, Math. Financ. Econ., 2, 3, 189-210, 2009 · Zbl 1255.91181 · doi:10.1007/s11579-009-0019-9
[28] Ma, J.; Yao, S., On quadratic \(g\)-evaluation/expectations and related analysis, Stoch. Anal. Appl., 28, 4, 711-734, 2010 · Zbl 1206.60057 · doi:10.1080/07362994.2010.482827
[29] Melnikov, A.; Smirnov, I., Dynamic hedging of conditional value-at-risk, Insur.: Math. Econ., 51, 1, 182-190, 2012 · Zbl 1284.91525
[30] Peng, S.: Backward SDE and related g-expectation. Backward stochastic differential equations. Pitman Res. Notes Math. 364, 141-159 (1997) · Zbl 0892.60066
[31] Peng, S.: Nonlinear, expectations, nonlinear evaluations, measures, risk. In: Stochastic Methods in Finance. Lecture Notes in Mathematics, vol. 2004. Springer, Berlin, Heidelberg (1856)
[32] Rosazza Gianin, E., Risk measures via g-expectations, Insur.: Math. Econ., 39, 1, 19-34, 2006 · Zbl 1147.91346
[33] Rudloff, B., Convex hedging in incomplete markets, Appl. Math. Financ., 14, 5, 437-452, 2007 · Zbl 1151.91537 · doi:10.1080/13504860701352206
[34] Schied, A., Risk measures and robust optimization problems, Stoch. Model., 22, 753-831, 2006 · Zbl 1211.91151 · doi:10.1080/15326340600878677
[35] Schroder, M.; Skiadas, C., Optimal lifetime consumption-portfolio strategies under trading constraints and generalized recursive preferences, Stoch. Process. Appl., 108, 2, 155-202, 2003 · Zbl 1075.91026 · doi:10.1016/j.spa.2003.09.001
[36] Sekine, J., Dynamic minimization of worst conditional expectation of shortfall, Math. Financ., 14, 605-618, 2004 · Zbl 1108.91046 · doi:10.1111/j.0960-1627.2004.00207.x
[37] Skiadas, C., Robust control and recursive utility, Financ. Stoch., 7, 475-489, 2003 · Zbl 1039.91010 · doi:10.1007/s007800300100
[38] Yong, J., Zhou, X.Y.: Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer (1999) · Zbl 0943.93002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.