×

Knots and entanglement. (English) Zbl 07902839

Summary: We extend the entanglement bootstrap program to (3+1)-dimensions. We study knotted excitations of (3+1)-dimensional liquid topological orders and exotic fusion processes of loops. As in previous work in (2+1)-dimensions [Ann. Phys. 418, 168164 (2020), Phys. Rev. B 103, 115150 (2021)], we define a variety of superselection sectors and fusion spaces from two axioms on the ground state entanglement entropy. In particular, we identify fusion spaces associated with knots. We generalize the information convex set to a new class of regions called immersed regions, promoting various theorems to this new context. Examples from solvable models are provided; for instance, a concrete calculation of knot multiplicity shows that the knot complement of a trefoil knot can store quantum information. We define spiral maps that allow us to understand consistency relations for torus knots as well as spiral fusions of fluxes.

MSC:

81Txx Quantum field theory; related classical field theories
81Pxx Foundations, quantum information and its processing, quantum axioms, and philosophy
81Vxx Applications of quantum theory to specific physical systems

References:

[1] B. Shi, K. Kato and I. H. Kim, Fusion rules from entanglement, Ann. Phys. 418, 168164 (2020), doi:10.1016/j.aop.2020.168164. · Zbl 1435.81263 · doi:10.1016/j.aop.2020.168164
[2] B. Shi and I. H. Kim, Entanglement bootstrap approach for gapped domain walls, Phys. Rev. B 103, 115150 (2021), doi:10.1103/PhysRevB.103.115150. · doi:10.1103/PhysRevB.103.115150
[3] X. G. Wen, Topological orders in rigid states, Int. J. Mod. Phys. B 04, 239 (1990), doi:10.1142/S0217979290000139. · doi:10.1142/S0217979290000139
[4] A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303, 2 (2003), doi:10.1016/S0003-4916(02)00018-0. · Zbl 1012.81006 · doi:10.1016/S0003-4916(02)00018-0
[5] B. Shi, Verlinde formula from entanglement, Phys. Rev. Res. 2, 023132 (2020), doi:10.1103/PhysRevResearch.2.023132. · doi:10.1103/PhysRevResearch.2.023132
[6] A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96, 110404 (2006), doi:10.1103/PhysRevLett.96.110404. · doi:10.1103/PhysRevLett.96.110404
[7] M. Levin and X.-G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96, 110405 (2006), doi:10.1103/PhysRevLett.96.110405. · doi:10.1103/PhysRevLett.96.110405
[8] C. L. Kane and M. P. A. Fisher, Quantized thermal transport in the fractional quantum Hall effect, Phys. Rev. B 55, 15832 (1997), doi:10.1103/PhysRevB.55.15832. · doi:10.1103/PhysRevB.55.15832
[9] N. Read and D. Green, Paired states of fermions in two dimensions with breaking of par-ity and time-reversal symmetries and the fractional quantum Hall effect, Phys. Rev. B 61, 10267 (2000), doi:10.1103/PhysRevB.61.10267. · doi:10.1103/PhysRevB.61.10267
[10] A. Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. 321, 2 (2006), doi:10.1016/j.aop.2005.10.005. · Zbl 1125.82009 · doi:10.1016/j.aop.2005.10.005
[11] I. H. Kim, B. Shi, K. Kato and V. V. Albert, Chiral central charge from a single bulk wave function, Phys. Rev. Lett. 128, 176402 (2022), doi:10.1103/PhysRevLett.128.176402. · doi:10.1103/PhysRevLett.128.176402
[12] I. H. Kim, B. Shi, K. Kato and V. V. Albert, Modular commutator in gapped quantum many-body systems, Phys. Rev. B 106, 075147 (2022), doi:10.1103/PhysRevB.106.075147. · doi:10.1103/PhysRevB.106.075147
[13] B. Shi and I. H. Kim, Domain wall topological entanglement entropy, Phys. Rev. Lett. 126, 141602 (2021), doi:10.1103/PhysRevLett.126.141602. · doi:10.1103/PhysRevLett.126.141602
[14] E. H. Lieb and M. B. Ruskai, Proof of the strong subadditivity of quantum-mechanical entropy, J. Math. Phys. 14, 1938 (1973), doi:10.1063/1.1666274. · doi:10.1063/1.1666274
[15] I. H. Kim, Conservation laws from entanglement, (2015), Sydney Quantum Information Theory Workshop (2015), link.
[16] B. Shi, Seeing topological entanglement through the information convex, Phys. Rev. Res. 1, 033048 (2019), doi:10.1103/PhysRevResearch.1.033048. · doi:10.1103/PhysRevResearch.1.033048
[17] B. Shi and Y.-M. Lu, Characterizing topological order by the information convex, Phys. Rev. B 99, 035112 (2019), doi:10.1103/PhysRevB.99.035112. · doi:10.1103/PhysRevB.99.035112
[18] K. Kato, F. Furrer and M. Murao, Information-theoretical analysis of topological en-tanglement entropy and multipartite correlations, Phys. Rev. A 93, 022317 (2016), doi:10.1103/PhysRevA.93.022317. · doi:10.1103/PhysRevA.93.022317
[19] I. H. Kim, On the informational completeness of local observables, (arXiv preprint) doi:10.48550/arXiv.1405.0137. · doi:10.48550/arXiv.1405.0137
[20] B. Shi, J.-L. Huang and J. McGreevy, Remote detectability from entanglement bootstrap I: Kirby’s torus trick, (arXiv preprint) doi:10.48550/arXiv.2301.07119. · doi:10.48550/arXiv.2301.07119
[21] J. Roberts, Knots knotes (2015), http://math.ucsd.edu/ justin/Papers/knotes.pdf.
[22] H. Bombin, Topological order with a twist: Ising anyons from an abelian model, Phys. Rev. Lett. 105, 030403 (2010), doi:10.1103/PhysRevLett.105.030403. · doi:10.1103/PhysRevLett.105.030403
[23] M. Aguado and G. Vidal, Entanglement Renormalization and topological order, Phys. Rev. Lett. 100, 070404 (2008), doi:10.1103/PhysRevLett.100.070404. · doi:10.1103/PhysRevLett.100.070404
[24] Z.-C. Gu, M. Levin, B. Swingle and X.-G. Wen, Tensor-product representations for string-net condensed states, Phys. Rev. B 79, 085118 (2009), doi:10.1103/PhysRevB.79.085118. · doi:10.1103/PhysRevB.79.085118
[25] M. A. Levin and X.-G. Wen, String-net condensation: A physical mechanism for topological phases, Phys. Rev. B 71, 045110 (2005), doi:10.1103/PhysRevB.71.045110. · doi:10.1103/PhysRevB.71.045110
[26] H. Bombin and M. A. Martin-Delgado, Family of non-Abelian Kitaev models on a lat-tice: Topological condensation and confinement, Phys. Rev. B 78, 115421 (2008), doi:10.1103/PhysRevB.78.115421. · doi:10.1103/PhysRevB.78.115421
[27] X.-G. Wen, Exactly soluble local bosonic cocycle models, statistical transmutation, and simplest time-reversal symmetric topological orders in 3+1 dimensions, Phys. Rev. B 95, 205142 (2017), doi:10.1103/PhysRevB.95.205142. · doi:10.1103/PhysRevB.95.205142
[28] H. Moradi and X.-G. Wen, Universal topological data for gapped quantum liquids in three dimensions and fusion algebra for non-Abelian string excitations, Phys. Rev. B 91, 075114 (2015), doi:10.1103/PhysRevB.91.075114. · doi:10.1103/PhysRevB.91.075114
[29] C. Wang and M. Levin, Braiding statistics of loop excitations in three dimensions, Phys. Rev. Lett. 113, 080403 (2014), doi:10.1103/PhysRevLett.113.080403. · doi:10.1103/PhysRevLett.113.080403
[30] C. Wang and M. Levin, Topological invariants for gauge theories and symmetry-protected topological phases, Phys. Rev. B 91, 165119 (2015), doi:10.1103/PhysRevB.91.165119. · doi:10.1103/PhysRevB.91.165119
[31] X. Wen, H. He, A. Tiwari, Y. Zheng and P. Ye, Entanglement entropy for (3+1)-dimensional topological order with excitations, Phys. Rev. B 97, 085147 (2018), doi:10.1103/PhysRevB.97.085147. · doi:10.1103/PhysRevB.97.085147
[32] T. Lan, L. Kong and X.-G. Wen, Classification of (3 +1)D bosonic topological orders: The case when pointlike excitations are all bosons, Phys. Rev. X 8, 021074 (2018), doi:10.1103/PhysRevX.8.021074. · doi:10.1103/PhysRevX.8.021074
[33] T. Lan and X.-G. Wen, Classification of 3+1d bosonic topological orders (II): The case when some pointlike excitations are fermions, Phys. Rev. X 9, 021005 (2019), doi:10.1103/PhysRevX.9.021005. · doi:10.1103/PhysRevX.9.021005
[34] C. C. Adams, The knot book, American Mathematical Society, Rhode Island, US, 9781470424909 (1994). · Zbl 1065.57003
[35] D. V. Else and C. Nayak, Cheshire charge in (3+1)-dimensional topological phases, Phys. Rev. B 96, 045136 (2017), doi:10.1103/PhysRevB.96.045136. · doi:10.1103/PhysRevB.96.045136
[36] D. S. Dummit and R. M. Foote, Abstract algebra, Prentice Hall Englewood Cliffs, NJ, ISBN 9780130047717 (1991). · Zbl 0751.00001
[37] N. D. Mermin, The topological theory of defects in ordered media, Rev. Mod. Phys. 51, 591 (1979), doi:10.1103/RevModPhys.51.591. · Zbl 0711.55009 · doi:10.1103/RevModPhys.51.591
[38] T. Grover, A. M. Turner and A. Vishwanath, Entanglement entropy of gapped phases and topological order in three dimensions, Phys. Rev. B 84, 195120 (2011), doi:10.1103/PhysRevB.84.195120. · doi:10.1103/PhysRevB.84.195120
[39] R. Dijkgraaf and E. Witten, Topological gauge theories and group cohomology, Commun. Math. Phys. 129, 393 (1990), doi:10.1007/BF02096988. · Zbl 0703.58011 · doi:10.1007/BF02096988
[40] Y. Wan, J. C. Wang and H. He, Twisted gauge theory model of topological phases in three dimensions, Phys. Rev. B 92, 045101 (2015), doi:10.1103/PhysRevB.92.045101. · doi:10.1103/PhysRevB.92.045101
[41] K. Walker and Z. Wang, (3+1)-TQFTs and topological insulators, Front. Phys. 7, 150 (2012), doi:10.1007/s11467-011-0194-z. · doi:10.1007/s11467-011-0194-z
[42] C. W. von Keyserlingk, F. J. Burnell and S. H. Simon, Three-dimensional topo-logical lattice models with surface anyons, Phys. Rev. B 87, 045107 (2013), doi:10.1103/PhysRevB.87.045107. · doi:10.1103/PhysRevB.87.045107
[43] B. Shi, Anyon theory in gapped many-body systems from entanglement, PhD thesis, The Ohio State University, (2020).
[44] J. C. Wang and X.-G. Wen, Non-Abelian string and particle braiding in topological order: Modular SL(3, ) representation and (3+1)-dimensional twisted gauge theory, Phys. Rev. B 91, 035134 (2015), doi:10.1103/PhysRevB.91.035134. · doi:10.1103/PhysRevB.91.035134
[45] S. Jiang, A. Mesaros and Y. Ran, Generalized modular transformations in (3+1)d topolog-ically ordered phases and triple linking invariant of loop braiding, Phys. Rev. X 4, 031048 (2014), doi:10.1103/PhysRevX.4.031048. · doi:10.1103/PhysRevX.4.031048
[46] S. Smale, A classification of immersions of the two-sphere, Trans. Am. Math. Soc. 90, 281 (1959), doi:10.2307/1993205. · Zbl 0089.18102 · doi:10.2307/1993205
[47] S. Levy, D. Maxwell, and T. Munzner, Outside in, AK Peters, Wellesley, MA (1994) https: //www.youtube.com/watch?v=wO61D9x6lNY.
[48] S. Levy, Making Waves, A guide to the ideas behind Outside in, University of Minessota, Minessota, USA (1995).
[49] I. H. Kim, Long-range entanglement is necessary for a topological storage of quantum infor-mation, Phys. Rev. Lett. 111, 080503 (2013), doi:10.1103/PhysRevLett.111.080503. · doi:10.1103/PhysRevLett.111.080503
[50] T. Johnson-Freyd, On the classification of topological orders, Commun. Math. Phys. 393, 989 (2022), doi:10.1007/s00220-022-04380-3. · Zbl 1507.81169 · doi:10.1007/s00220-022-04380-3
[51] T. Johnson-Freyd, (3+1)D topological orders with only a 2 -charged particle, (arXiv preprint) doi:10.48550/arXiv.2011.11165. · doi:10.48550/arXiv.2011.11165
[52] C.-M. Jian, Private communication (2020).
[53] A. P. O. Chan, P. Ye and S. Ryu, Braiding with Borromean rings in (3+1)-dimensional spacetime, Phys. Rev. Lett. 121, 061601 (2018), doi:10.1103/PhysRevLett.121.061601. · doi:10.1103/PhysRevLett.121.061601
[54] L. Sparaco, Character varieties of knots and links with symmetries, PhD thesis, The Florida State University, 2017.
[55] G. K. Francis, A topological picturebook, Springer, New York, USA, ISBN 9780387345420 (2006), doi:10.1007/978-0-387-68120-7. · Zbl 0612.57001 · doi:10.1007/978-0-387-68120-7
[56] M. Staley, Understanding quaternions and the Dirac belt trick, Eur. J. Phys. 31, 467 (2010), doi:10.1088/0143-0807/31/3/004. · Zbl 1189.81124 · doi:10.1088/0143-0807/31/3/004
[57] A. Kitaev and L. Kong, Models for gapped boundaries and domain walls, Commun. Math. Phys. 313, 351 (2012), doi:10.1007/s00220-012-1500-5. · Zbl 1250.81141 · doi:10.1007/s00220-012-1500-5
[58] B. J. Brown, S. D. Bartlett, A. C. Doherty and S. D. Barrett, Topological entanglement entropy with a twist, Phys. Rev. Lett. 111, 220402 (2013), doi:10.1103/PhysRevLett.111.220402. · doi:10.1103/PhysRevLett.111.220402
[59] B. Polster, Smale’s inside out paradox, Youtube (2016) https://www.youtube.com/watch? v=ixduANVe0gg.
[60] C. H. Séquin, Tori story (2011), https://archive.bridgesmathart.org/2011/ bridges2011-121.pdf
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.