×

Dynamics of weighted flexible ribbons in a uniform flow. (English) Zbl 07902510

Summary: This study explores the dynamics of flexible ribbons with an added weight \(G\) at the tail in uniform flow, considering key parameters like inflow Reynolds number (\(Re_u\)), mass ratio (\(M_t\)) and aspect ratio (Æ). For two-dimensional ribbons, a simplified theoretical model accurately predicts equilibrium configurations and forces. Inspired by Barois & De Langre (J. Fluid Mech., vol. 735, 2013, R2), we introduce an important control parameter (\(C_G\)) that effectively collapses normalized forces and angle data. Vortex-induced vibration is observed, and Strouhal number (\(St\)) scaling laws with \(C_G\) are identified. In three-dimensional scenarios, the model effectively predicts lift, but its accuracy in predicting drag is limited to situations with small \(Re_u\) values. The flow along the side edges mitigates pressure differences, thereby suppressing vibration and uplift, particularly noticeable in the case of narrow ribbons. This study offers new insights into the dynamics of flexible bodies in uniform flow.

MSC:

76-XX Fluid mechanics
Full Text: DOI

References:

[1] Alben, S. & Shelley, M.2008Flapping states of a flag in an inviscid fluid: bistability and the transition to chaos. Phys. Rev. Lett.100, 074301.
[2] Alben, S., Shelley, M. & Zhang, J.2002Drag reduction through self-similar bending of a flexible body. Nature420, 479-481.
[3] Alben, S., Shelley, M. & Zhang, J.2004How flexibility induces streamlining in a two-dimensional flow. Phys. Fluids16, 1694-1713. · Zbl 1186.76020
[4] Allen, J.J. & Smits, A.J.2001Energy harvesting eel. J. Fluids Struct.15 (3), 629-640.
[5] Barois, T. & De Langre, E.2013Flexible body with drag independent of the flow velocity. J. Fluid Mech.735, R2. · Zbl 1294.76002
[6] Batchelor, G.K.1967An Introduction to Fluid Dynamics. Cambridge University Press. · Zbl 0152.44402
[7] Buchak, P., Eloy, C. & Reis, P.M.2010The clapping book: wind-driven oscillations in a stack of elastic sheets. Phys. Rev. Lett.105, 194301.
[8] Carlson, D.W., Currier, T.M. & Modarres-Sadeghi, Y.2021Flow-induced vibrations of a square prism free to oscillate in the cross-flow and inline directions. J. Fluid Mech.919, A2.
[9] Chen, S.Y. & Doolen, G.D.1998Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech.30, 329-364. · Zbl 1398.76180
[10] Connell, B.S.H. & Yue, D.K.P.2007Flapping dynamics of a flag in a uniform stream. J. Fluid Mech.581, 33-67. · Zbl 1124.76011
[11] Doyle, J.F.2001Nonlinear Analysis of Thin-Walled Structures: Statics, Dynamics, and Stability. Springer. · Zbl 0973.74001
[12] Eloy, C., Lagrange, R., Souilliez, C. & Schouveiler, L.2008Aeroelastic instability of cantilevered flexible plates in uniform flow. J. Fluid Mech.611, 97-106. · Zbl 1151.74347
[13] Gao, S., Pan, S., Wang, H. & Tian, X.2020Shape deformation and drag variation of a coupled rigid-flexible system in a flowing soap film. Phys. Rev. Lett.125, 034502.
[14] Gazzola, M., Argentina, M. & Mahadevan, L.2014Scaling macroscopic aquatic locomotion. Nat. Phys.10, 758-761.
[15] Gosselin, F., De Langre, E. & Machado-Almeida, B.A.2010Drag reduction of flexible plates by reconfiguration. J. Fluid Mech.650, 319-341. · Zbl 1189.76026
[16] Han, P., De Langre, E., Thompson, M.C., Hourigan, K. & Zhao, J.2023Vortex-induced vibration forever even with high structural damping. J. Fluid Mech.962, A13. · Zbl 1533.76024
[17] Hua, R.-N., Zhu, L. & Lu, X.-Y.2013Locomotion of a flapping flexible plate. Phys. Fluids25, 121901.
[18] Hua, R.-N., Zhu, L. & Lu, X.-Y.2014Dynamics of fluid flow over a circular flexible plate. J. Fluid Mech.759, 56-72.
[19] Huang, H., Wei, H. & Lu, X.-Y.2018Coupling performance of tandem flexible inverted flags in a uniform flow. J. Fluid Mech.837, 461-476. · Zbl 1419.76749
[20] Huang, W., Shin, S.J. & Sung, H.J.2007Simulation of flexible filaments in a uniform flow by the immersed boundary method. J. Comput. Phys.226 (2), 2206-2228. · Zbl 1388.74037
[21] Huang, W. & Sung, H.J.2010Three-dimensional simulation of a flapping flag in a uniform flow. J. Fluid Mech.653, 301-336. · Zbl 1193.74035
[22] Jia, L.-B., Li, F., Yin, X.-Z. & Yin, X.-Y.2007Coupling modes between two flapping filaments. J. Fluid Mech.581, 199-220. · Zbl 1176.76044
[23] Jia, L.-B. & Yin, X.-Z.2008Passive oscillations of two tandem flexible filaments in a flowing soap film. Phys. Rev. Lett.100, 228104.
[24] Kim, D., Cossé, J., Huertas Cerdeira, C. & Gharib, M.2013Flapping dynamics of an inverted flag. J. Fluid Mech.736, R1. · Zbl 1294.76025
[25] Kim, Y. & Peskin, C.S.2007Penalty immersed boundary method for an elastic boundary with mass. Phys. Fluids19 (5), 053103. · Zbl 1146.76441
[26] De Langre, E.2008Effects of wind on plants. Annu. Rev. Fluid Mech.40 (1), 141-168. · Zbl 1231.76374
[27] Lauder, G.V.2015Fish locomotion: recent advances and new directions. Annu. Rev. Mar. Sci.7, 521-545.
[28] Liu, K., Huang, H. & Lu, X.-Y.2020Hydrodynamic benefits of intermittent locomotion of a self-propelled flapping plate. Phys. Rev. E102, 053106.
[29] Liu, K., Liu, X. & Huang, H.2022Scaling the self-propulsive performance of pitching and heaving flexible plates. J. Fluid Mech.936, A9. · Zbl 07471436
[30] Luhar, M. & Nepf, H.M.2011Flow-induced reconfiguration of buoyant and flexible aquatic vegetation. Limnol. Oceanogr.56 (6), 2003-2017.
[31] Mathai, V., Tzezana, G.A., Das, A. & Breuer, K.S.2022Fluid-structure interactions of energy-harvesting membrane hydrofoils. J. Fluid Mech.942, R4. · Zbl 1510.76046
[32] Nepf, H.M.2012Flow and transport in regions with aquatic vegetation. Annu. Rev. Fluid Mech.44 (1), 123-142. · Zbl 1350.76056
[33] O’Connor, J. & Revell, A.2019Dynamic interactions of multiple wall-mounted flexible flaps. J. Fluid Mech.870, 189-216.
[34] Peng, Z.-R., Huang, H. & Lu, X.-Y.2018Collective locomotion of two closely spaced self-propelled flapping plates. J. Fluid Mech.849, 1068-1095. · Zbl 1415.76801
[35] Platzer, M.F., Jones, K.D., Young, J. & Lai, J.C.S.2008Flapping wing aerodynamics: progress and challenges. AIAA J.46 (9), 2136-2149.
[36] Raissi, M., Wang, Z., Triantafyllou, M.S. & Karniadakis, G.E.2019Deep learning of vortex-induced vibrations. J. Fluid Mech.861, 119-137. · Zbl 1415.76177
[37] Ristroph, L. & Zhang, J.2008Anomalous hydrodynamic drafting of interacting flapping flags. Phys. Rev. Lett.101, 194502.
[38] Sarpkaya, T.2004A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids Struct.19 (4), 389-447.
[39] Schouveiler, L. & Boudaoud, A.2006The rolling up of sheets in a steady flow. J. Fluid Mech.563, 71-80. · Zbl 1100.74016
[40] Schouveiler, L. & Eloy, C.2013Flow-induced draping. Phys. Rev. Lett.111, 064301.
[41] Shelley, M., Vandenberghe, N. & Zhang, J.2005Heavy flags undergo spontaneous oscillations in flowing water. Phys. Rev. Lett.94, 094302.
[42] Shelley, M. & Zhang, J.2011Flapping and bending bodies interacting with fluid flows. Annu. Rev. Fluid Mech.43 (1), 449-465. · Zbl 1299.76001
[43] Shen, L., Zhang, X., Yue, D.K.P. & Triantafyllou, M.S.2003Turbulent flow over a flexible wall undergoing a streamwise travelling wave motion. J. Fluid Mech.484, 197-221. · Zbl 1058.76032
[44] Smits, A.J.2019Undulatory and oscillatory swimming. J. Fluid Mech.874, P1. · Zbl 1419.76756
[45] Sun, Y., Peng, Z., Yang, D., Xiong, Y., Wang, L. & Wang, L.2022Dynamics of a rigid-flexible coupling system in a uniform flow. J. Fluid Mech.943, A44. · Zbl 1498.76020
[46] Sunil, P., Kumar, S. & Poddar, K.2022Flow past a rotationally oscillating cylinder with an attached flexible filament. J. Fluid Mech.930, A3. · Zbl 1483.76064
[47] Taneda, S.1968Waving motion of flags. J. Phys. Soc. Japan24, 392-401.
[48] Taylor, G., Nudds, R. & Thomas, A.2003Flying and swimming animals cruise at a strouhal number tuned for high power efficiency. Nature425, 707-711.
[49] Triantafyllou, M.S., Triantafyllou, G.S. & Yue, D.K.P.2000Hydrodynamics of fishlike swimming. Annu. Rev. Fluid Mech.32, 33-53. · Zbl 0988.76102
[50] Uddin, E., Huang, W. & Sung, H.J.2013Interaction modes of multiple flexible flags in a uniform flow. J. Fluid Mech.729, 563-583. · Zbl 1291.76380
[51] Van Eysden, C.A. & Sader, J.E.2006Resonant frequencies of a rectangular cantilever beam immersed in a fluid. J. Appl. Phys.100 (11), 114916.
[52] Vogel, S.1984Drag and flexibility in sessile organisms. Am. Zool.24 (1), 37-44.
[53] Vogel, S.1989Drag and reconfiguration of broad leaves in high winds. J. Expl Bot.40 (8), 941-948.
[54] Watanabe, Y., Suzuki, S., Sugihara, M. & Sueoka, Y.2002An experimental study of paper flutter. J. Fluids Struct.16 (4), 529-542.
[55] Williamson, C.H.K. & Govardhan, R.2004Vortex-induced vibrations. Annu. Rev. Fluid Mech.36 (1), 413-455. · Zbl 1125.74323
[56] Wu, T.Y.2011Fish swimming and bird/insect flight. Annu. Rev. Fluid Mech.43, 25-58. · Zbl 1210.76095
[57] Wu, X., Ge, F. & Hong, Y.2012A review of recent studies on vortex-induced vibrations of long slender cylinders. J. Fluids Struct.28, 292-308.
[58] Zhang, C., Huang, H. & Lu, X.-Y.2020Effect of trailing-edge shape on the self-propulsive performance of heaving flexible plates. J. Fluid Mech.887, A7. · Zbl 1460.76592
[59] Zhang, J., Childress, S., Libchaber, A. & Shelley, M.2000Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind. Nature408, 835-839.
[60] Zhu, L.2008Scaling laws for drag of a compliant body in an incompressible viscous flow. J. Fluid Mech.607, 387-400. · Zbl 1146.76020
[61] Zhu, L.2009Interaction of two tandem deformable bodies in a viscous incompressible flow. J. Fluid Mech.635, 455-475. · Zbl 1183.76709
[62] Zhu, L. & Peskin, C.S.2002Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method. J. Comput. Phys.179 (2), 452-468. · Zbl 1130.76406
[63] Zhu, L. & Peskin, C.S.2003Interaction of two flapping filaments in a flowing soap film. Phys. Fluids15 (7), 1954-1960. · Zbl 1186.76611
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.