×

Majorana lattice gauge theory: symmetry breaking, topological order and intertwined orders all in one. (English) Zbl 07902454

Summary: The Majorana lattice gauge theory purely composed of Majorana fermions on square lattice is studied throughly. The ground state is obtained exactly and exhibits the coexistence of symmetry breaking and topological order. The \(Z_2\) symmetry breaking of matter fields leads to the intertwined antiferromagnetic spin order and \(\eta\)-pairing order. The topological order is reflected in the \(Z_2\) quantum spin liquid ground state of gauge fields. The Majorana lattice gauge theory, alternatively can be viewed as interacting Majorana fermion model, is possibly realized on a Majorana-zero-mode lattice.

MSC:

81Pxx Foundations, quantum information and its processing, quantum axioms, and philosophy
81Vxx Applications of quantum theory to specific physical systems
82Bxx Equilibrium statistical mechanics

References:

[1] D. C. Tsui, H. L. Stormer and A. C. Gossard, Two-dimensional magneto-transport in the extreme quantum limit, Phys. Rev. Lett. 48, 1559 (1982), doi:10.1103/PhysRevLett.48.1559. · doi:10.1103/PhysRevLett.48.1559
[2] J. G. Bednorz and K. A. Müller, Possible high T c superconductivity in the Ba-La-Cu-O system, Z. Phys. B Condens. Matter 64, 189 (1986), doi:10.1007/BF01303701. · doi:10.1007/BF01303701
[3] P. W. Anderson, Resonating valence bonds: A new kind of insulator?, Mater. Res. Bull. 8, 153 (1973), doi:10.1016/0025-5408(73)90167-0. · doi:10.1016/0025-5408(73)90167-0
[4] P. A. Lee, An end to the drought of quantum spin liquids, Science 321, 1306 (2008), doi:10.1126/science.1163196. · doi:10.1126/science.1163196
[5] L. Balents, Spin liquids in frustrated magnets, Nature 464, 199 (2010), doi:10.1038/nature08917. · doi:10.1038/nature08917
[6] L. Savary and L. Balents, Quantum spin liquids: A review, Rep. Prog. Phys. 80, 016502 (2016), doi:10.1088/0034-4885/80/1/016502. · doi:10.1088/0034-4885/80/1/016502
[7] Y. Zhou, K. Kanoda and T.-K. Ng, Quantum spin liquid states, Rev. Mod. Phys. 89, 025003 (2017), doi:10.1103/RevModPhys.89.025003. · doi:10.1103/RevModPhys.89.025003
[8] J. Knolle and R. Moessner, A field guide to spin liquids, Annu. Rev. Condens. Matter Phys. 10, 451 (2019), doi:10.1146/annurev-conmatphys-031218-013401. · doi:10.1146/annurev-conmatphys-031218-013401
[9] C. Broholm, R. J. Cava, S. A. Kivelson, D. G. Nocera, M. R. Norman and T. Senthil, Quantum spin liquids, Science 367, eaay0668 (2020), doi:10.1126/science.aay0668. · doi:10.1126/science.aay0668
[10] P. W. Anderson, The resonating valence bond state in La 2 CuO 4 and superconductivity, Sci-ence 235, 1196 (1987), doi:10.1126/science.235.4793.1196. · doi:10.1126/science.235.4793.1196
[11] X. G. Wen, Vacuum degeneracy of chiral spin states in compactified space, Phys. Rev. B 40, 7387 (1989), doi:10.1103/PhysRevB.40.7387. · doi:10.1103/PhysRevB.40.7387
[12] X. G. Wen, Topological orders in rigid states, Int. J. Mod. Phys. B 04, 239 (1990), doi:10.1142/S0217979290000139. · doi:10.1142/S0217979290000139
[13] A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96, 110404 (2006), doi:10.1103/PhysRevLett.96.110404. · doi:10.1103/PhysRevLett.96.110404
[14] M. Levin and X.-G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96, 110405 (2006), doi:10.1103/PhysRevLett.96.110405. · doi:10.1103/PhysRevLett.96.110405
[15] X. Chen, Z.-C. Gu and X.-G. Wen, Local unitary transformation, long-range quantum en-tanglement, wave function renormalization, and topological order, Phys. Rev. B 82, 155138 (2010), doi:10.1103/PhysRevB.82.155138. · doi:10.1103/PhysRevB.82.155138
[16] X.-G. Wen, Colloquium: Zoo of quantum-topological phases of matter, Rev. Mod. Phys. 89, 041004 (2017), doi:10.1103/RevModPhys.89.041004. · doi:10.1103/RevModPhys.89.041004
[17] J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems, Rep. Prog. Phys. 75, 076501 (2012), doi:10.1088/0034-4885/75/7/076501. · doi:10.1088/0034-4885/75/7/076501
[18] C. W. J. Beenakker, Search for Majorana fermions in superconductors, Annu. Rev. Condens. Matter Phys. 4, 113 (2013), doi:10.1146/annurev-conmatphys-030212-184337. · doi:10.1146/annurev-conmatphys-030212-184337
[19] S. R. Elliott and M. Franz, Colloquium: Majorana fermions in nuclear, particle, and solid-state physics, Rev. Mod. Phys. 87, 137 (2015), doi:10.1103/RevModPhys.87.137. · doi:10.1103/RevModPhys.87.137
[20] L. Fu and C. L. Kane, Superconducting proximity effect and Majorana fermions at the surface of a topological insulator, Phys. Rev. Lett. 100, 096407 (2008), doi:10.1103/PhysRevLett.100.096407. · doi:10.1103/PhysRevLett.100.096407
[21] J. D. Sau, R. M. Lutchyn, S. Tewari and S. Das Sarma, Generic new platform for topological quantum computation using semiconductor heterostructures, Phys. Rev. Lett. 104, 040502 (2010), doi:10.1103/PhysRevLett.104.040502. · doi:10.1103/PhysRevLett.104.040502
[22] J. Alicea, Majorana fermions in a tunable semiconductor device, Phys. Rev. B 81, 125318 (2010), doi:10.1103/PhysRevB.81.125318. · doi:10.1103/PhysRevB.81.125318
[23] R. M. Lutchyn, J. D. Sau and S. Das Sarma, Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures, Phys. Rev. Lett. 105, 077001 (2010), doi:10.1103/PhysRevLett.105.077001. · doi:10.1103/PhysRevLett.105.077001
[24] Y. Oreg, G. Refael and F. von Oppen, Helical liquids and Majorana bound states in quantum wires, Phys. Rev. Lett. 105, 177002 (2010), doi:10.1103/PhysRevLett.105.177002. · doi:10.1103/PhysRevLett.105.177002
[25] C. Nayak, S. H. Simon, A. Stern, M. Freedman and S. Das Sarma, Non-Abelian anyons and topological quantum computation, Rev. Mod. Phys. 80, 1083 (2008), doi:10.1103/RevModPhys.80.1083. · Zbl 1205.81062 · doi:10.1103/RevModPhys.80.1083
[26] C.-K. Chiu, D. I. Pikulin and M. Franz, Strongly interacting Majorana fermions, Phys. Rev. B 91, 165402 (2015), doi:10.1103/PhysRevB.91.165402. · doi:10.1103/PhysRevB.91.165402
[27] A. Rahmani, D. Pikulin and I. Affleck, Phase diagrams of Majorana-Hubbard ladders, Phys. Rev. B 99, 085110 (2019), doi:10.1103/PhysRevB.99.085110. · doi:10.1103/PhysRevB.99.085110
[28] A. Rahmani, D. Pikulin and I. Affleck, Phase diagrams of Majorana-Hubbard ladders, Phys. Rev. B 99, 085110 (2019), doi:10.1103/PhysRevB.99.085110. · doi:10.1103/PhysRevB.99.085110
[29] A. Rahmani and M. Franz, Interacting Majorana fermions, Rep. Prog. Phys. 82, 084501 (2019), doi:10.1088/1361-6633/ab28ef. · doi:10.1088/1361-6633/ab28ef
[30] Z. Nussinov, G. Ortiz and E. Cobanera, Arbitrary dimensional Majorana duali-ties and architectures for topological matter, Phys. Rev. B 86, 085415 (2012), doi:10.1103/PhysRevB.86.085415. · doi:10.1103/PhysRevB.86.085415
[31] T. Grover, D. N. Sheng and A. Vishwanath, Emergent space-time supersymmetry at the boundary of a topological phase, Science 344, 280 (2014), doi:10.1126/science.1248253. · doi:10.1126/science.1248253
[32] A. Rahmani, X. Zhu, M. Franz and I. Affleck, Emergent supersymmetry from strongly interacting Majorana zero modes, Phys. Rev. Lett. 115, 166401 (2015), doi:10.1103/PhysRevLett.115.166401. · doi:10.1103/PhysRevLett.115.166401
[33] A. Rahmani, X. Zhu, M. Franz and I. Affleck, Phase diagram of the interacting Majorana chain model, Phys. Rev. B 92, 235123 (2015), doi:10.1103/PhysRevB.92.235123. · doi:10.1103/PhysRevB.92.235123
[34] N. Sannomiya and H. Katsura, Supersymmetry breaking and Nambu-Goldstone fermions in interacting Majorana chains, Phys. Rev. D 99, 045002 (2019), doi:10.1103/PhysRevD.99.045002. · doi:10.1103/PhysRevD.99.045002
[35] S. Vijay, T. H. Hsieh and L. Fu, Majorana fermion surface code for universal quantum computation, Phys. Rev. X 5, 041038 (2015), doi:10.1103/PhysRevX.5.041038. · doi:10.1103/PhysRevX.5.041038
[36] L. A. Landau, S. Plugge, E. Sela, A. Altland, S. M. Albrecht and R. Egger, Towards real-istic implementations of a Majorana surface code, Phys. Rev. Lett. 116, 050501 (2016), doi:10.1103/PhysRevLett.116.050501. · doi:10.1103/PhysRevLett.116.050501
[37] X. Zhu and M. Franz, Tricritical Ising phase transition in a two-ladder Majorana fermion lattice, Phys. Rev. B 93, 195118 (2016), doi:10.1103/PhysRevB.93.195118. · doi:10.1103/PhysRevB.93.195118
[38] E. O’Brien and P. Fendley, Lattice supersymmetry and order-disorder coexis-tence in the tricritical Ising model, Phys. Rev. Lett. 120, 206403 (2018), doi:10.1103/PhysRevLett.120.206403. · doi:10.1103/PhysRevLett.120.206403
[39] H. Katsura, D. Schuricht and M. Takahashi, Exact ground states and topologi-cal order in interacting Kitaev/Majorana chains, Phys. Rev. B 92, 115137 (2015), doi:10.1103/PhysRevB.92.115137. · doi:10.1103/PhysRevB.92.115137
[40] J.-J. Miao, H.-K. Jin, F.-C. Zhang and Y. Zhou, Exact solution for the interact-ing Kitaev chain at the symmetric point, Phys. Rev. Lett. 118, 267701 (2017), doi:10.1103/PhysRevLett.118.267701. · doi:10.1103/PhysRevLett.118.267701
[41] S. Sachdev and J. Ye, Gapless spin-fluid ground state in a random quantum Heisenberg magnet, Phys. Rev. Lett. 70, 3339 (1993), doi:10.1103/PhysRevLett.70.3339. · doi:10.1103/PhysRevLett.70.3339
[42] A. Kitaev, A simple model of quantum holography (2015), https://online.kitp.ucsb.edu/ online/entangled15/.
[43] C. Prosko, S.-P. Lee and J. Maciejko, Simple 2 lattice gauge theories at finite fermion density, Phys. Rev. B 96, 205104 (2017), doi:10.1103/PhysRevB.96.205104. · doi:10.1103/PhysRevB.96.205104
[44] A. Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. 321, 2 (2006), doi:10.1016/j.aop.2005.10.005. · Zbl 1125.82009 · doi:10.1016/j.aop.2005.10.005
[45] F. J. Wegner, Duality in generalized Ising models and phase transitions without local order parameters, J. Math. Phys. 12, 2259 (1971), doi:10.1063/1.1665530. · doi:10.1063/1.1665530
[46] Z. Chen, X. Li and T. K. Ng, Exactly solvable BCS-Hubbard model in arbitrary dimensions, Phys. Rev. Lett. 120, 046401 (2018), doi:10.1103/PhysRevLett.120.046401. · doi:10.1103/PhysRevLett.120.046401
[47] C. N. Yang, η pairing and off-diagonal long-range order in a Hubbard model, Phys. Rev. Lett. 63, 2144 (1989), doi:10.1103/PhysRevLett.63.2144. · doi:10.1103/PhysRevLett.63.2144
[48] C. N. Yang and S. C. Zhang, SO (4) symmetry in a Hubbard model, Mod. Phys. Lett. B 04, 759 (1990), doi:10.1142/S0217984990000933. · doi:10.1142/S0217984990000933
[49] E. Fradkin, S. A. Kivelson and J. M. Tranquada, Colloquium: Theory of inter-twined orders in high temperature superconductors, Rev. Mod. Phys. 87, 457 (2015), doi:10.1103/RevModPhys.87.457. · doi:10.1103/RevModPhys.87.457
[50] X.-G. Wen, Quantum orders in an exact soluble model, Phys. Rev. Lett. 90, 016803 (2003), doi:10.1103/PhysRevLett.90.016803. · doi:10.1103/PhysRevLett.90.016803
[51] A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303, 2 (2003), doi:10.1016/S0003-4916(02)00018-0. · Zbl 1012.81006 · doi:10.1016/S0003-4916(02)00018-0
[52] S. Elitzur, Impossibility of spontaneously breaking local symmetries, Phys. Rev. D 12, 3978 (1975), doi:10.1103/PhysRevD.12.3978. · doi:10.1103/PhysRevD.12.3978
[53] J. B. Kogut, An introduction to lattice gauge theory and spin systems, Rev. Mod. Phys. 51, 659 (1979), doi:10.1103/RevModPhys.51.659. · doi:10.1103/RevModPhys.51.659
[54] S. Gazit, M. Randeria and A. Vishwanath, Emergent Dirac fermions and broken symme-tries in confined and deconfined phases of 2 gauge theories, Nat. Phys. 13, 484 (2017), doi:10.1038/nphys4028. · doi:10.1038/nphys4028
[55] S. Gazit, F. F. Assaad, S. Sachdev, A. Vishwanath and C. Wang, Confinement transition of 2 gauge theories coupled to massless fermions: Emergent quantum chromodynamics and SO (5) symmetry, Proc. Natl. Acad. Sci. 115, E6987 (2018), doi:10.1073/pnas.1806338115. · Zbl 1416.81205 · doi:10.1073/pnas.1806338115
[56] S. Gazit, F. F. Assaad and S. Sachdev, Fermi surface reconstruction without symmetry break-ing, Phys. Rev. X 10, 041057 (2020), doi:10.1103/PhysRevX.10.041057. · doi:10.1103/PhysRevX.10.041057
[57] U. Borla, B. Jeevanesan, F. Pollmann and S. Moroz, Quantum phases of two-dimensional 2 gauge theory coupled to single-component fermion matter, Phys. Rev. B 105, 075132 (2022), doi:10.1103/PhysRevB.105.075132. · doi:10.1103/PhysRevB.105.075132
[58] M. Li et al., Ordered and tunable Majorana-zero-mode lattice in naturally strained LiFeAs, Nature 606, 890 (2022), doi:10.1038/s41586-022-04744-8. · doi:10.1038/s41586-022-04744-8
[59] X. G. Wen and Q. Niu, Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces, Phys. Rev. B 41, 9377 (1990), doi:10.1103/PhysRevB.41.9377. · doi:10.1103/PhysRevB.41.9377
[60] T. Senthil and M. P. A. Fisher, Fractionalization in the cuprates: Detecting the topological order, Phys. Rev. Lett. 86, 292 (2001), doi:10.1103/PhysRevLett.86.292. · doi:10.1103/PhysRevLett.86.292
[61] J.-J. Miao, D.-H. Xu, L. Zhang and F.-C. Zhang, Exact solution to the Haldane-BCS-Hubbard model along the symmetric lines: Interaction-induced topological phase transition, Phys. Rev. B 99, 245154 (2019), doi:10.1103/PhysRevB.99.245154. · doi:10.1103/PhysRevB.99.245154
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.