×

Asymptotic behavior of the maximum likelihood estimator for general Markov switching models. (English) Zbl 07901845

Summary: Motivated by studying the asymptotic properties of the parameter estimator in switching linear state space models, switching GARCH models, switching stochastic volatility models, and recurrent neural networks, we investigate the maximum likelihood estimator for general Markov switching models. To this end, we first propose an innovative matrix-valued Markovian iterated function system (MIFS) representation for the likelihood function. Then, we express the derivatives of the MIFS as a composition of random matrices. To the best of our knowledge, this is a new method in the literature. Using this useful device, we establish the strong consistency and asymptotic normality of the maximum likelihood estimator under some regularity conditions. Furthermore, we characterize the Fisher information as the inverse of the asymptotic variance.

MSC:

62-XX Statistics

Software:

Adam
Full Text: DOI

References:

[1] Baum, L. E. and Petrie, T. (1966). Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Statist. 37, 1554-1563. · Zbl 0144.40902
[2] Bickel, P., Ritov, Y. and Rydén, T. (1998). Asymptotic normality of the maximum likelihood estimator for general hidden Markov models. Ann. Statist. 26, 1614-1635. · Zbl 0932.62097
[3] Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity. J. Econometrics 31, 307-327. · Zbl 0616.62119
[4] Cai, J. (1994). A Markov model of switching-regime ARCH. J. Business & Econom. Statist. 12, 309-316.
[5] Calvet, L. E. and Fisher, A. J. (2001). Forecasting multifractal volatility. J. Econometrics 105, 27-58. · Zbl 1040.62084
[6] Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A. C. and Bengio, Y. A. (2015). A recurrent latent variable model for sequential data. In Advances in Neural Information Processing Systems, 2980-2988.
[7] Davig, T. and Doh, T. (2014). Monetary policy regime shifts and inflation persistence. The Review of Economics and Statistics 96, 862-875.
[8] Diaconis, P. and Freedman, D. (1999). Iterated random functions. SIAM Review 41, 45-76. · Zbl 0926.60056
[9] Douc, R. and Matias, C. (2001). Asymptotics of the maximum likelihood estimator for general hidden Markov models. Bernoulli 7, 381-420. · Zbl 0987.62018
[10] Douc, R., Moulines, É., Losson, J. and Handel, R. V. (2011). Consistency of the maximum likelihood estimator for general hidden Markov models. Ann. Statist. 39, 474-513. · Zbl 1209.62194
[11] Douc, R., Moulines, É. and Rydén, T. (2004). Asymptotics properties of the maximum likelihood estimator in autoregressive models with Markov regime. Ann. Statist. 32, 2254-2304. · Zbl 1056.62028
[12] Dudley, R. M. (1966). Weak convergence of probabilities on non-separable metric spaces and empirical measures on Euclidean spaces. Illinois J. Math. 10, 109-126. · Zbl 0178.52502
[13] Dütting, P., Feng, Z., Narasimhan, H., Parkes, D. C. and Ravindranath, S. S. (2019). Optimal auctions through deep learning. In Proceedings of the 36th International Conference on Machine Learning, PMLR 97. Long Beach.
[14] Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of U.K. inflation. Econometrica 50, 987-1008. · Zbl 0491.62099
[15] Fan, J. and Yao, Q. (2003). Nonlinear Time Series: Nonparametric and Parametric Methods. Springer, New York. · Zbl 1014.62103
[16] Francq, C. and Roussignol, M. (1998). Ergodicity of autoregressive processes with Markov-switching and consistency of the maximum likelihood estimator. Statistics 32, 151-173. · Zbl 0954.62104
[17] Fuh, C.-D. (2003). SPRT and CUSUM in hidden Markov models. Ann. Statist. 31, 942-977. · Zbl 1036.60005
[18] Fuh, C.-D. (2004). On Bahadur efficiency of the maximum likelihood estimator in hidden Markov models. Statist. Sinica 14, 127-144. · Zbl 1035.62016
[19] Fuh, C.-D. (2006). Efficient likelihood estimation in state space models. Ann. Statist. 34, 2026-2068. Corrigendum in 38, 1279-1285. · Zbl 1246.62185
[20] Fuh, C.-D. (2021). Asymptotic behavior for Markovian iterated function systems. Stoch. Proc. Appl. 138, 186-211. · Zbl 1469.60222
[21] Fuh, C. D. and Mei, Y. (2015). Quickest change detection and Kullback-Leibler divergence for two-state hidden Markov models. IEEE Transactions on Signal Processing 63, 4866-4878. · Zbl 1394.94808
[22] Ghahramani, Z. and Hinton, G. E. (2000). Variational learning for switching state-space models. Neural Comput. 12, 831-864.
[23] Ghahramani, Z. and Jordan, M. I. (1997). Factorial hidden Markov models. Mach. Learn. 29, 245-273. · Zbl 0892.68080
[24] Goldfeld, S. M. and Quandt, R. E. (1973). A Markov model for switching regressions. J. Econometrics 1, 3-16. · Zbl 0294.62087
[25] Goodfellow, I., Bengio, Y. and Courville, A. (2016). Deep Learning. MIT Press, Cambridge. · Zbl 1373.68009
[26] Gu, S., Kelly, B. and Xiu, D. (2020). Empirical asset pricing via machine learning. The Review of Financial Studies 33, 2223-2273.
[27] Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57, 357-384. · Zbl 0685.62092
[28] Hamilton, J. D. (1994). Time Series Analysis. Princeton University Press, New Jersey. · Zbl 0831.62061
[29] Hamilton, J. D. and Susmel, R. (1994). Autoregressive conditional heteroskedasticity and changes in regime. J. Econometrics 64, 307-333. · Zbl 0825.62950
[30] Hartford, J., Lewis, G., Leyton-Brown, K. and Taddy, M. (2016). Counterfactual prediction with deep instrumental variables networks. arXiv:1612.09596.
[31] Jensen, J. L. and Petersen, N. V. (1999). Asymptotic normality of the maximum likelihood estimator in state space models. Ann. Statist. 27, 514-535. · Zbl 0952.62023
[32] Kim, C.-J. (1994). Dynamic linear models with Markov-switching. J. Econometrics 60, 1-22. · Zbl 0795.62104
[33] Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In Proceedings of 3rd International Conference on Learning Representations.
[34] Kuan, C.-M. and White, H. (1994). Artificial neural networks: An econometric perspective (with discussions). Econometric Reviews 13, 1-91. · Zbl 0832.62101
[35] Leroux, B. G. (1992). Maximum likelihood estimation for hidden Markov models. Stoch. Proc. Appl. 40, 127-143. · Zbl 0738.62081
[36] Meyn, S. and Tweedie, R. L. (2009). Markov Chains and Stochastic Stability. 2nd Edition. Cambridge University Press, Cambridge. · Zbl 1165.60001
[37] Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1987). Learning internal representation by error propagation. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations, 318-362.
[38] Sirignano, J. A. (2019). Deep learning for limit order books. Quantitative Finance 19, 549-570. · Zbl 1420.91555
[39] So, M. K. P., Lam, K. and Li, W. K. (1998). A stochastic volatility model with Markov switching. J. Business & Econom. Statist. 16, 244-253.
[40] Taylor, S. J. (1986). Modeling Financial Time Series. John Wiley & Sons, Chichester. · Zbl 1130.91345
[41] Tretter, C. (2008). Spectral Theory of Block Operator Matrices and Applications. Imperial College Press, London. · Zbl 1173.47003
[42] Verstyuk, S. (2020). Modeling multivariate time series in economics: From auto-regressions to recurrent neural networks. Retrieved from http://www.verstyuk.net/papers/VARMRNN. pdf. White, H. (1988). Economic prediction using neural networks: The case of IBM stock prices. In Proceedings of the Second Annual IEEE Conference on Neural Networks II, 451-458.
[43] White, H. (1989). Some asymptotic results for learning in single hidden layer feedforward network models. J. Amer. Statist. Assoc. 84, 1003-1013. · Zbl 0721.62081
[44] Yonekura, S., Beskos A. and Singh, A. A. (2021). Asymptotic analysis of model selection criteria for general hidden Markov models. Stochastic Processes and their Applications 132, 164-191. · Zbl 1472.62138
[45] Zhang, F. (2011). Matrix Theory: Basic Results and Techniques. 2nd Edition. Springer-Verlag, New York. · Zbl 1229.15002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.