×

On differential inclusions arising from some discontinuous systems. (English) Zbl 07901797

The author considers a control system of the following form \[ \dot{x} = Ax + Bu \] on \([0,T]\) with the boundary conditions \[ x(0) = x_0,\quad x_j(T) = x_{T_j}, \] where \(j\) belongs to a given index set \(J \subset \{1,...,n\}.\) Here \(A\) is a constant \(n \times n\) matrix, \(B\) has the form \(B = diag[E_m,\mathbb{O}_{n-m}],\) \(m < n.\) It is supposed also that the discontinuity surface \(s(x,c) = 0_m\) is given, where the parameters \(c \in \mathbb{R}^l\) are unknown.
Under these conditions, it is assumed that the control functions have the form \[ u_i = - \alpha_i |x| sign (s_i(x,c)), \quad \alpha_i \in [\underline{a}_i,\overline{a}_i],\,\,i = 1,...,m. \] Then on the surfaces \(s_i(c,x) = 0,\) \(i = 1,...,m\) the system takes the form of the differential inclusion \[ \left\{ \begin{array}{l} \dot{x}_i \in A_ix + [- \overline{a}_i,\overline{a}_i]|x|,\quad i = 1,...,m; \\ \dot{x}_i \in A_ix, \quad i = m+1,...,n. \end{array} \right. \] It is required to find such a trajectory which moves along the discontinuity surface (the parameters \(c\) are to be determined as well) and satisfies the above differential inclusion and boundary conditions.
This task is reduced to a variational problem of finding a minimum of certain functionals defined on functional spaces. Some differentiability properties of these functionals are considered and necessary conditions of a minimum are presented.

MSC:

34H05 Control problems involving ordinary differential equations
34A36 Discontinuous ordinary differential equations
34A60 Ordinary differential inclusions

References:

[1] Filippov, A. F. (1985). Differential Equations with Discontinuous Right-Hand Side. Moscow: Nauka. · Zbl 0571.34001
[2] Aizerman, M. A., Pyatniskii, E. S. (1974). Fundamentals of the theory of discontinuous systems. I. Autom. Remote Control. 7:33-47.
[3] Utkin, V. I. (1981). Sliding Modes in Control and Optimization. Moscow: Nauka.
[4] Ashrafiuon, H., Muske, K. R., McNinch, L. C., Soltan, R. A. (2008). Sliding-mode tracking control of surface vessels. IEEE Trans. Ind. Electron.55(11):4004-4012. DOI: .
[5] Beltran, B., Ahmed-Ali, T., Benbouzid, M. (2009). High-order sliding-mode control of variable-speed wind turbines. J. IEEE Trans. Ind. Electron.56(9):3314-3321. DOI: .
[6] Levant, A. (2003). Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control. 76(9):924-941. DOI: . · Zbl 1049.93014
[7] Emelyanov, S. V., Korovin, S. K., Levant, A. (1993). Sliding modes of higher orders in control systems. Differ. Equ. 29(11):1627-1647. · Zbl 0815.93015
[8] Bartoszewicz, A. (1998). Discrete-time quasi-sliding-mode control strategies. IEEE Trans. Ind. Electron.45(4):633-637. DOI: .
[9] Furuta, K. (1990). Sliding mode control of a discrete system. Syst. Control Lett.14(2):145-152. DOI: . · Zbl 0692.93043
[10] Xu, R., Özgüner, Ü. (2015). Sliding mode control of a class of underactuated systems. Automatica44(1):233-241. DOI: . · Zbl 1138.93409
[11] Tang, Y. (1998). Terminal sliding mode control for rigid robots. Automatica34(1):51-56. DOI: . · Zbl 0908.93042
[12] Shtessel, Y. B., Shkolnikov, I. A., Levant, A. (2007). Smooth second-order sliding modes: Missile guidance application. Automatica. 43(8):1470-1476. DOI: . · Zbl 1130.93392
[13] Fominyh, A. V. (2021). Method for finding a solution to a linear nonstationary interval ODE system. Vestnik Saint Petersburg Univ. Appl. Math. Comput. Sci. Control Process. 17(2):148-165.
[14] Fominyh, A. V. (2018). A numerical method for finding the optimal solution of a differential inclusion. Vestnik St. Petersburg Univ. Math. 51(4):397-406. DOI: . · Zbl 1441.49006
[15] Fominyh, A. V. (2018). A method for solving differential inclusions with fixed right end. Vestnik of Saint Petersburg University. Appl. Math. Comput. Sci. Control Process. 14(4):302-315.
[16] Demyanov, V. F., Malozemov, V. N. (1990). Introduction to Minimax. New York: Dover Publications Inc. · Zbl 0781.90079
[17] Demyanov, V. F., Vasil’ev, L. V. (1986). Nondifferentiable Optimization. New York: Springer-Optimization Software. · Zbl 0712.49012
[18] Dolgopolik, M. (2021). Constrained nonsmooth problems of the calculus of variations. ESAIM: Control Optim. Cal. Var. 27(79):1-35. · Zbl 1473.49023
[19] Kolmogorov, A. N., Fomin, S. V. (1999). Elements of the Theory of Functions and Functional Analysis. New York: Dover Publications Inc.
[20] Wonham, W. M., Johnson, C. D. (1964). Optimal Bang-Bang control with quadratic performance index. Trans. ASME, J. Basic Eng. 86:107-115. DOI: .
[21] Blagodatskih, V. I. (2001). Introduction to Optimal Control. Moscow: Vysshaya shkola Publ.
[22] Dolgopolik, M. V., Fominyh, A. V. (2019). Exact penalty functions for optimal control problems I: main theorem and free-endpoint problemsOptimal Control Appl. Methods40(6):1018-1044. DOI: . · Zbl 1451.49026
[23] Kantorovich, L. V., Akilov, G.Functional Analysis. Moscow: Nauka.
[24] Bonnans, J. F., Shapiro, A. (2000). Perturbation Analysis of Optimization Problems. New York: Springer. · Zbl 0966.49001
[25] Demyanov, V. F., Rubinov, A. M. (1990). Basics of Nonsmooth Analysis and Quasidifferential Calculus. Moscow: Nauka. · Zbl 0728.49001
[26] Blagodatskih, V. I., Filippov, A. F. (1986). Differential inclusions and optimal control. Proc. Steklov Inst. Math. 169:199-259. · Zbl 0608.49027
[27] Aubin, J.-P., Frankowska, H. (1990). Set-Valued Analysis. Boston: Birkhauser. · Zbl 0713.49021
[28] Filippov, A. F. (1959). On certain questions in the theory of optimal control. J. Soc. Ind. Appl. Math. Ser. A: Control1(1):76-84. DOI: . · Zbl 0139.05102
[29] Dunford, N., Schwartz, J. T. (1958). Linear Operators, Part 1: General Theory. New York: Interscience Publishers Inc. · Zbl 0084.10402
[30] Munroe, M. E. (1953). Introduction to Measure and Integration. Massachusetts: Addison-Wesley. · Zbl 0050.05603
[31] Fominyh, A. V. (2023). The subdifferential descent method in a nonsmooth variational problem. Optim. Lett. 17:675-698. DOI: . · Zbl 1515.90142
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.