×

Hopf’s lemma and uniqueness of simultaneously determining source profile and Robin coefficient in a fractional diffusion equation by interior data. (Hopf’s lemma and uniqueness of simultaneously determining source profile and Robin coefficient in a fractional diffusionequation by interior data.) (English) Zbl 07901604

Summary: This paper is devoted to an inverse problem of simultaneously determining the spatially dependent source term and the Robin boundary coefficient in a time fractional diffusion equation, with the aid of extra measurement data at a subdomain near the accessible boundary. Firstly, the spatially varying source is uniquely determined in view of the unique continuation principle and Duhamel principle for the fractional diffusion equation. The Hopf lemma for a homogeneous time-fractional diffusion equation is proved and then used to prove the uniqueness of recovering the Robin boundary coefficient. Numerically, based on the theoretical uniqueness result, we apply the classical Tikhonov regularization method to transform the inverse problem into a minimization problem, which is solved by an iterative thresholding algorithm. Finally, several numerical examples are presented to show the accuracy and effectiveness of the proposed algorithm.

MSC:

35R30 Inverse problems for PDEs
35R11 Fractional partial differential equations
35K20 Initial-boundary value problems for second-order parabolic equations
47A52 Linear operators and ill-posed problems, regularization
Full Text: DOI

References:

[2] A parabolic problem with a fractional time derivative, Arch. Ration Mech. Anal., 221, 603-630, 2016 · Zbl 1338.35428 · doi:10.1007/s00205-016-0969-z
[3] On the fractional calculus model of viscoelastic behavior, J. Rheol., 30, 133-155, 1998 · Zbl 0613.73034
[4] J. V. Beck, B. Blackwell and R. St Clair Jr. Charles, Inverse Heat Conduction: Ill-posed Problems, James Beck, 1985. · Zbl 0633.73120
[5] Application of a fractional advection-dispersion equation, Water Resources Research, 36, 1403-1412, 2000
[6] H. Brezis, Functional Analysis, Sobolev spaces and Partial Differential Equations, Springer, 2011 · Zbl 1220.46002
[7] Theory and simulation of time-fractional fluid diffusion in porous media, Journal of Physics A: Mathematical and Theoretical, 46, 345501, 2013 · Zbl 1396.76085 · doi:10.1088/1751-8113/46/34/345501
[8] Investigation of heat transfer coefficient in two-dimensional transient inverse heat conduction problems using the hybrid inverse scheme, Internat. J. Numer. Methods Engrg., 73, 107-122, 2008 · Zbl 1195.80017 · doi:10.1002/nme.2059
[9] Unique continuation property for the anomalous diffusion and its application, J. Differ. Equ., 254, 3715-3728, 2013 · Zbl 1307.35312 · doi:10.1016/j.jde.2013.01.039
[10] Quasilinear evolutionary equations and continuous interpolation spaces, J. Differential Equations, 196, 418-447, 2004 · Zbl 1058.35136 · doi:10.1016/j.jde.2003.07.014
[11] An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Commun. Pure Appl. Math., 57, 141-157, 2004 · Zbl 1077.65055 · doi:10.1002/cpa.20042
[12] R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology: Volume 3, Springer-Verlag, Berlin, 1990. · Zbl 0784.73001
[13] Fractional diffusion equation for transport phenomena in random media, Phys. A., 185, 82-97, 1992
[14] Time-fractional diffusion equation in the fractional Sobolev spaces, Fract. Calc. Appl. Anal., 18, 799-820, 2015 · Zbl 1499.35642 · doi:10.1515/fca-2015-0048
[15] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Advanced Publishing Program, Boston, 1985. · Zbl 0695.35060
[16] Carleman estimates for the time-fractional advection-diffusion equations and applications, Inverse Problems, 35, 045003, 2019 · Zbl 1418.35050 · doi:10.1088/1361-6420/ab0138
[17] D. Jiang, Z. Li, Y. Liu and M. Yamamoto, Weak unique continuation property and a related inverse source problem for time-fractional diffusion-advection equations, Inverse Problems, 33 (2017), 055013, 22 pp. · Zbl 1372.35364
[18] Numerical estimation of piecewise constant Robin coefficient, SIAM J. Control Optim., 48, 1977-2002, 2009 · Zbl 1197.65178 · doi:10.1137/070710846
[19] Logarithmic stable recovery of the source and the initial state of time fractional diffusion equations, SIAM J. Math. Anal., 55, 3888-3902, 2023 · Zbl 1522.35584 · doi:10.1137/22M1504743
[20] A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. · Zbl 1092.45003
[21] A. Kubica, K. Ryszewska and M. Yamamoto, Time-fractional Differential Equations A Theoretical Introduction, SpringerBriefs Math, Springer, Singapore, 2020. · Zbl 1485.34002
[22] Initial-boundary value problems for fractional diffusion equations with time-dependent coefficients, Fract. Calc. Appl. Anal., 21, 276-311, 2018 · Zbl 1398.35271 · doi:10.1515/fca-2018-0018
[23] Measurement and analysis of non-Fickian dispersion in heterogeneous porous media, Journal of Contaminant Hydrology, 64, 203-226, 2003
[24] Initial-boundary value problem for the multi-term time-fractional diffusion equations with \(x\)-dependent coefficients, Evolution Equation and Control Theory, 9, 153-179, 2020 · Zbl 1431.35231 · doi:10.3934/eect.2020001
[25] Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients, Appl. Math. Comput., 257, 381-397, 2015 · Zbl 1338.35471 · doi:10.1016/j.amc.2014.11.073
[26] Inverse source problem for a one-dimensional time-fractional diffusion equation and unique continuation for weak solutions, Inverse Problems and Imaging, 17, 1-22, 2023 · Zbl 1512.35626 · doi:10.3934/ipi.2022027
[27] Unique continuation principle for the one-dimensional time-fractional diffusion equation, Fract. Calc. Appl. Anal., 22, 644-657, 2019 · Zbl 1423.35404 · doi:10.1515/fca-2019-0036
[28] Z. Li and Z. Zhang, Unique determination of fractional order and source term in a fractional diffusion equation from sparse boundary data, Inverse Problems, 36 (2020), 115013, 20 pp. · Zbl 1452.35259
[29] Unique continuation property for anomalous slow diffusion equation, Comm. Partial Differential Equations, 41, 749-758, 2016 · Zbl 1350.35048 · doi:10.1080/03605302.2015.1135164
[30] Strong maximum principle for multi-term time-fractional diffusion equations and its application to an inverse source problem, Comput. Math. Appl., 73, 96-108, 2017 · Zbl 1368.35273 · doi:10.1016/j.camwa.2016.10.021
[31] Maximum principle for the generalized time-fractional diffusion equation, J. Math. Anal. Appl., 351, 218-223, 2009 · Zbl 1172.35341 · doi:10.1016/j.jmaa.2008.10.018
[33] The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339, 1-77, 2000 · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[35] Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382, 426-447, 2011 · Zbl 1219.35367 · doi:10.1016/j.jmaa.2011.04.058
[36] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Philadelphia, 1993. · Zbl 0818.26003
[37] Determination of the Robin coefficient in a nonlinear boundary condition for a steady-state problem, Math. Methods Appl. Sci., 32, 1311-1324, 2009 · Zbl 1167.35547 · doi:10.1002/mma.1095
[38] Observability, controllability, and feedback stabilizability for evolution equations, I., Japan J. Appl. Math., 2, 211-228, 1985 · Zbl 0593.93028 · doi:10.1007/BF03167045
[39] Uniqueness and numerical scheme for the Robin coefficient identification of the time-fractional diffusion equation, Comput. Math. Appl., 75, 4107-4114, 2018 · Zbl 1419.65047 · doi:10.1016/j.camwa.2018.03.017
[40] Two regularization methods to identify a space-dependent source for the time-fractional diffusion equation, Appl. Numer. Math., 68, 39-57, 2013 · Zbl 1266.65161 · doi:10.1016/j.apnum.2013.01.001
[41] Uniqueness for an inverse space-dependent source term in a multi-dimensional time-fractional diffusion equation, Appl. Math. Lett., 61, 108-113, 2016 · Zbl 1386.35481 · doi:10.1016/j.aml.2016.05.004
[42] Determination of Robin coefficient in a fractional diffusion problem, Appl. Math. Modelling, 40, 7948-7961, 2016 · Zbl 1471.65127 · doi:10.1016/j.apm.2016.03.046
[43] Robin coefficient identification for a time-fractional diffusion equation, Inverse Probl. Sci. Eng., 24, 647-666, 2016 · Zbl 1342.65210 · doi:10.1080/17415977.2015.1055261
[44] F. White, Heat and Mass Transfer, Addison-Wesley, 1988.
[45] Carleman estimate for a fractional diffusion equation with half order and application, Appl. Anal., 90, 1355-1371, 2011 · Zbl 1236.35199 · doi:10.1080/00036811.2010.507199
[46] Carleman estimates for parabolic equations and applications, Inverse Problems, 25, 123013, 2009 · Zbl 1194.35512 · doi:10.1088/0266-5611/25/12/123013
[47] X. Yang and Z. Li, Strong positivity property and a related inverse source problem for multi-term time-fractional diffusion equations, preprint, 2021, arXiv: 2104.08434.
[48] Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces, Funkcialaj Ekvacioj, 52, 1-18, 2009 · Zbl 1171.45003 · doi:10.1619/fesi.52.1
[49] On the simultaneous reconstruction of boundary Robin coefficient and internal source in a slow diffusion system, Inverse Problems, 37, 075008, 2021 · Zbl 1469.35264 · doi:10.1088/1361-6420/ac0967
[50] Inverse source problem for a fractional diffusion equation, Inverse Probl., 27, 035010, 2011 · Zbl 1211.35280 · doi:10.1088/0266-5611/27/3/035010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.