×

On the Cauchy problem for \(p\)-evolution equations with variable coefficients: a necessary condition for Gevrey well-posedness. (English) Zbl 07901386

Summary: In this paper we consider a class of \(p\)-evolution equations of arbitrary order with variable coefficients depending on time and space variables \((t, x)\). We prove necessary conditions on the decay rates of the coefficients for the well-posedness of the related Cauchy problem in Gevrey spaces.

MSC:

35G10 Initial value problems for linear higher-order PDEs
35B65 Smoothness and regularity of solutions to PDEs
35S05 Pseudodifferential operators as generalizations of partial differential operators
46F05 Topological linear spaces of test functions, distributions and ultradistributions

References:

[1] Arias Junior, A.; Ascanelli, A.; Cappiello, M., KdV-type equations in projective Gevrey spaces, J. Math. Pures Appl., 178, 110-140, 2023 · Zbl 1527.35342
[2] Arias Junior, A.; Ascanelli, A.; Cappiello, M., Gevrey well posedness for 3-evolution equations with variable coefficients, Ann. Sc. Norm. Super. Pisa, Cl. Sci., XXV, 1, 1-31, 2024 · Zbl 1537.35159
[3] Arias Junior, A.; Cappiello, M., On the sharp Gårding inequality for operators with polynomially bounded and Gevrey regular symbols, Mathematics, 8, 2020
[4] Ascanelli, A.; Boiti, C.; Zanghirati, L., Well-posedness of the Cauchy problem for p-evolution equations, J. Differ. Equ., 253, 10, 2765-2795, 2012 · Zbl 1252.35127
[5] Ascanelli, A.; Boiti, C.; Zanghirati, L., A necessary condition for \(H^\infty\) well-posedness of p-evolution equations, Adv. Differ. Equ., 21, 1165-1196, 2016 · Zbl 1375.35090
[6] Ascanelli, A.; Cappiello, M., Weighted energy estimates for p-evolution equations in SG classes, J. Evol. Equ., 15, 3, 583-607, 2015 · Zbl 1327.35047
[7] Ascanelli, A.; Cicognani, M.; Reissig, M., The interplay between decay of the data and regularity of the solution in Schrödinger equations, Ann. Mat. Pura Appl., 199, 4, 1649-1671, 2020 · Zbl 1442.35361
[8] Cicognani, M.; Reissig, M., Well-posedness for degenerate Schrödinger equations, Evol. Equ. Control Theory, 3, 1, 15-33, 2014 · Zbl 1286.35086
[9] Cicognani, M.; Reissig, M., Necessity of Gevrey-type Levi conditions for degenerate Schrödinger equations, J. Abstr. Differ. Equ. Appl., 5, 1, 52-70, 2014 · Zbl 1326.35302
[10] Dreher, M., Necessary conditions for the well-posedness of Schrödinger type equations in Gevrey spaces, Bull. Sci. Math., 127, 6, 485-503, 2003 · Zbl 1027.35020
[11] Ichinose, W., Some remarks on the Cauchy problem for Schrödinger type equations, Osaka J. Math., 21, 3, 565-581, 1984 · Zbl 0572.35021
[12] Ichinose, W., Sufficient condition on \(H^\infty\) well-posedness for Schrödinger type equations, Commun. Partial Differ. Equ., 9, 1, 33-48, 1984 · Zbl 0563.35066
[13] Kajitani, K.; Baba, A., The Cauchy problem for Schrödinger type equations, Bull. Sci. Math., 119, 5, 459-473, 1995 · Zbl 0856.35024
[14] Kumano-Go, H., Pseudo-Differential Operators, 1982, The MIT Press: The MIT Press Cambridge, London · Zbl 0179.42201
[15] Mizohata, S., On the Cauchy Problem, vol. 3, 2014, Academic Press
[16] Polyanin, A. D.; Zaitsev, V. F., Handbook of Nonlinear Partial Differential Equations, 2012, CRC Press: CRC Press Boca Raton, FL
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.