×

Linear temporal stability of Jeffery-Hamel flow of nanofluids. (English) Zbl 07901259

Summary: Flow stability plays a key role in transition to turbulence in various systems. This transition initiates with disturbances appearing in the laminar base flow, potentially amplifying over time based on flow and fluid parameters. In response to these amplified disturbances, the flow undergoes successive stages of different laminar flows, ultimately transitioning to turbulence. One influential parameter affecting flow stability is the nanoparticle volume fraction (\(\phi\)) in nanofluids, extensively employed in thermofluid systems like cooling devices to enhance fluid thermal conductivity and the heat transfer coefficient. Focusing on the impact of nanoparticles on Jeffery-Hamel flow stability, this study assumes fluid properties are temperature- and pressure-independent, exclusively examining the momentum transfer aspect. The analysis commences by deriving the base laminar flow solution. Subsequently, linear temporal stability analysis is employed, imposing infinitesimally-small perturbations on the base flow as a modified form of normal modes. A generalized Orr-Sommerfeld equation is derived and solved using a spectral method. Results indicate that, assuming nanofluid viscosity as \(\mu_{\mathrm{nf}} = \mu_{\mathrm{f}}/(1 - \phi)^{2.5}\), nanoparticle effects on momentum transfer and flow stability hinge on the ratio of nano-solid particle density to base fluid density (\(R_\rho = \rho_{\mathrm{s}}/\rho_{\mathrm{f}}\)). For \(\phi\in(0, 0.1]\), flow stabilization occurs with \(\phi\) when \(R_\rho < 3.5000\), while destabilization is observed when \(R_\rho > 4.0135\). Notably, nanoparticles exhibit a negligible impact on flow stability when \(3.5000 \leq R_\rho \leq 4.0135\).

MSC:

76E09 Stability and instability of nonparallel flows in hydrodynamic stability
76T20 Suspensions
76M22 Spectral methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] Choi, S.; Eastman, J., Enhancing thermal conductivity of fluids with nanoparticles, (66, 1995), URL https://www.osti.gov/biblio/196525
[2] Apmann, K.; Fulmer, R.; Scherer, B.; Good, S.; Wohld, J.; Vafaei, S., Nanofluid heat transfer: Enhancement of the heat transfer coefficient inside microchannels, Nanomaterials, 12, 4, 615, 2022
[3] Verma, L.; Meher, R.; Hammouch, Z.; Baskonus, H. M., Effect of heat transfer on hybrid nanofluid flow in converging/diverging channel using fuzzy volume fraction, Sci. Rep., 12, 1, 2022
[4] Drazin, P., Introduction to Hydrodynamic Stability, 2002, Cambridge University Press · Zbl 0997.76001
[5] Reynolds, O., IV. On the dynamical theory of incompressible viscous fluids and the determination of the criterion, Philos. Trans. R. Soc. Lond., 186, 123-164, 1895 · JFM 26.0872.02
[6] Tollmien, W., Über die entstehung der turbulenz. 1. Mitteilung, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1929, 21-44, 1928, URL http://eudml.org/doc/59276 · JFM 55.0474.01
[7] Schlichting, H., Laminare strahlausbreitung, ZAMM - Z. Ang. Math. Mech., 13, 260-263, 1933 · JFM 59.0767.02
[8] Singh, N.; Khandelwal, M. K., Linear stability perspective on mixed convection flow of nanofluids in a differentially heated vertical channel, Int. Commun. Heat Mass Transfer, 134, Article 105989 pp., 2022
[9] Jeffery, G., The two-dimensional steady motion of a viscous fluid, London, Edinb. Dublin Philos. Mag. J. Sci., 29, 172, 455-465, 1915 · JFM 45.1088.01
[10] Hamel, G., Spiralförmige bewegungen zäher flüssigkeiten., Jahresbericht der Deutschen Math.-Vereinigung, 25, 34-60, 1917 · JFM 46.1255.01
[11] Alam, M. S.; Khan, M. A.H.; Alim, A., Magnetohydrodynamic stability of jeffery-hamel flow using different nanoparticles, J. Appl. Fluid Mech., 9, 2, 899-908, 2016
[12] Li, Z.; Khan, I.; Shafee, A.; Tlili, I.; Asifa, T., Energy transfer of jeffery-hamel nanofluid flow between non-parallel walls using maxwell-garnetts (MG) and Brinkman models, Energy Rep., 4, 393-399, 2018
[13] Dean, W., Note on the divergent flow of fluid, London, Edinb. Dublin Philos. Mag. J. Sci., 18, 121, 759-777, 1934 · JFM 60.0731.02
[14] Eagles, P., The stability of a family of jeffery-hamel solutions for divergent channel flow, J. Fluid Mech., 24, 1, 191-207, 1966
[15] McAlpine, A.; Drazin, P. G., On the spatio-temporal development of small perturbations of jeffery-hamel flows, Fluid Dyn. Res., 22, 3, 123-138, 1998 · Zbl 1051.76554
[16] Putkaradze, V.; Vorobieff, P., Instabilities, bifurcations, and multiple solutions in expanding channel flows, Phys. Rev. Lett., 97, 14, 2006
[17] Makinde, O.; Mhone, P., Temporal stability of small disturbances in MHD jeffery-hamel flows, Comput. Math. Appl., 53, 1, 128-136, 2007 · Zbl 1175.76061
[18] Haines, P. E.; Hewitt, R. E.; Hazel, A. L., The jeffery-hamel similarity solution and its relation to flow in a diverging channel, J. Fluid Mech., 687, 404-430, 2011 · Zbl 1241.76119
[19] Sobey, I. J.; Drazin, P. G., Bifurcations of two-dimensional channel flows, J. Fluid Mech., 171, -1, 263, 1986 · Zbl 0609.76050
[20] Jotkar, M. R.; Govindarajan, R., Non-modal stability of jeffery-hamel flow, Phys. Fluids, 29, 6, 2017
[21] Kant, R.; Vinod, N., Control of optimal growth of instabilities in jeffery-hamel flow, AIP Adv., 9, 3, 2019
[22] Jotkar, M.; Govindarajan, R., Two-dimensional modal and non-modal instabilities in straight-diverging-straight channel flow, Phys. Fluids, 31, 1, 2019
[23] Shenoy, D. V.; Shadloo, M. S.; Peixinho, J.; Hadjadj, A., Direct numerical simulations of laminar and transitional flows in diverging pipes, Internat. J. Numer. Methods Heat Fluid Flow, 30, 1, 75-92, 2019
[24] Kant, R.; Sharma, V.; Bhoraniya, R.; Vinod, N., Receptivity and sensitivity analysis of jeffery-hamel flow, Sādhanā, 47, 3, 2022
[25] Fujimura, K., On the linear stability of jeffery-hamel flow in a convergent channel, J. Phys. Soc. Japan, 51, 6, 2000-2009, 1982
[26] Brinkman, H., The viscosity of concentrated suspensions and solutions, J. Chem. Phys., 20, 4, 571, 1952
[27] Bashirnezhad, K.; Bazri, S.; Safaei, M. R.; Goodarzi, M.; Dahari, M.; Mahian, O.; Dalkılıça, A. S.; Wongwises, S., Viscosity of nanofluids: A review of recent experimental studies, Int. Commun. Heat Mass Transfer, 73, 114-123, 2016
[28] Rezaee, D.; Samari, A.; Mirsaeidi, A., Heat transfer in the jeffery-hamel flow of a yield-stress fluid, Int. J. Heat Mass Transfer, 216, Article 124531 pp., 2023
[29] Pozrikidis, C., Fluid Dynamics, 2009, Springer US
[30] Schlichting, H.; Gersten, K., Boundary-Layer Theory, 2017, Springer Berlin Heidelberg · Zbl 1358.76001
[31] Patnaik, P., Handbook of inorganic chemicals, 2003, McGraw-Hill New York, URL http://ndl.ethernet.edu.et/bitstream/123456789/30291/1/2548.pdf
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.