×

On aspects of the normalized infinity Laplacian on Finsler manifolds. (English) Zbl 07900460

Summary: In the context of Finsler manifolds, the paper explores the existence, asymptotic boundary behavior, and uniqueness of viscosity solutions to infinite boundary-value problems associated with the normalized infinite Laplacian in relatively compact subsets. The equation under consideration incorporates lower-order terms featuring non-linear gradient terms. To achieve this objective, we study Dirichlet problems with continuous boundary data and establish a comparison principle, which is of independent significance.

MSC:

35J70 Degenerate elliptic equations
35J60 Nonlinear elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35B40 Asymptotic behavior of solutions to PDEs
Full Text: DOI

References:

[1] Alves, B.; Javaloyes, M. A., A note on the existence of tubular neighborhoods on Finsler manifolds and minimization of orthogonal geodesics to a submanifold, Proc. Amer. Math. Soc., 147, 1, 369-376, 2019 · Zbl 1404.53024
[2] Araújo, D. J.; Mari, L.; Pessoa, L. F., Detecting the completeness of a Finsler manifold via potential theory for its infinity Laplacian, J. Differential Equations, 281, 550-587, 2021 · Zbl 1461.53057
[3] Armstrong, S. N.; Smart, C. K., An easy proof of Jensen’s theorem on the uniqueness of infinity harmonic functions, Calc. Var. Partial Differential Equations, 37, 3-4, 381-384, 2010 · Zbl 1187.35104
[4] Armstrong, S. N.; Smart, C. K., A finite difference approach to the infinity Laplace equation and tug-of-war games, Trans. Amer. Math. Soc., 364, 2, 595-636, 2012 · Zbl 1239.91011
[5] Armstrong, S. N.; Smart, C. K.; Somersille, S., An infinity Laplace equation with gradient term and mixed boundary conditions, Proc. Amer. Math. Soc., 139, 5, 1763-1776, 2011 · Zbl 1216.35062
[6] Aronsson, G., Minimization problems for the functional \(\sup_x F ( x , f ( x ) , f^\prime ( x ) )\), Ark. Mat., 6, 33-53, 1965 · Zbl 0156.12502
[7] Aronsson, G., Minimization problems for the functional \(\sup_x F ( x , f ( x ) , f^\prime ( x ) )\). II, Ark. Mat., 6, 409-431, 1966 · Zbl 0156.12502
[8] Aronsson, G., Extension of functions satisfying Lipschitz conditions, Ark. Mat., 6, 551-561, 1967 · Zbl 0158.05001
[9] Aronsson, G.; Crandall, M. G.; Juutinen, P., A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. (N.S.), 41, 4, 439-505, 2004 · Zbl 1150.35047
[10] Bao, D.; Chern, S.-S.; Shen, Z., An Introduction to Riemann-Finsler Geometry, 2000, Springer-Verlag: Springer-Verlag New York · Zbl 0954.53001
[11] Barles, G.; Busca, J., Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term, Comm. Partial Differential Equations, 26, 2323-2337, 2001 · Zbl 0997.35023
[12] Barron, E. N.; Evans, L. C.; Jensen, R., The infinity Laplacian, Aronsson’s equation and their generalizations, Trans. Amer. Math. Soc., 360, 77-101, 2008 · Zbl 1125.35019
[13] Caponio, E.; Javaloyes, M. A.; Sánchez, M., On the interplay between Lorentzian causality and Finsler metrics of Randers type, Rev. Mat. Iberoam., 27, 3, 919-952, 2011 · Zbl 1229.53070
[14] Capuzzo, D. I.; Leoni, F.; Vitolo, A., On the inequality \(F ( x , D^2 u ) \geq f ( u ) + g ( u ) | D u |^q\), Math. Ann., 365, 423-448, 2016 · Zbl 1342.35116
[15] Crandall, M. G., A visit with the \(\infty \)-Laplace equation, (Calc. Var. and Nonlinear Partial Differential Equations. Calc. Var. and Nonlinear Partial Differential Equations, Lecture Notes in Math., vol. 1927, 2008, Springer: Springer Berlin), 75-122 · Zbl 1357.49112
[16] Crandall, M. G.; Evans, L. C.; Gariepy, R. F., Optimal Lipschitz extensions and the infinity Laplacian, Calc. Var. Partial Differential Equations, 13, 2, 123-139, 2001 · Zbl 0996.49019
[17] Crasta, C.; Malusa, A., The distance function from the boundary in a Minkowski space, Trans. Amer. Math. Soc., 359, 12, 5725-5759, 2007 · Zbl 1132.35005
[18] Evans, L. C., The \(1\)-Laplacian, the infinity Laplacian and differential games, Contemp. Math., 446, 245-254, 2007 · Zbl 1200.35114
[19] Ghergu, M.; Rădulescu, V. D., (Singular Elliptic Problems: Bifurcation and Asymptotic Analysis. Singular Elliptic Problems: Bifurcation and Asymptotic Analysis, Oxford Lecture Ser. Math. Appl., vol. 37, 2008, Clarendon Press: Clarendon Press Oxford) · Zbl 1159.35030
[20] Gómez, I.; Rossi, J. D., Tug-of-war games and the infinity Laplacian with spatial dependence, Commun. Pure Appl. Anal., 12, 5, 1959-1983, 2013 · Zbl 1267.35086
[21] Guo, C.-Y.; Chang, C.-L.; Yang, D., \( L^\infty \)-Variational problems associated to measurable Finsler structures, Nonlinear Anal., 132, 126-140, 2016 · Zbl 1329.49004
[22] Jensen, R., Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient, Arch. Ration. Mech. Anal., 123, 1, 51-74, 1993 · Zbl 0789.35008
[23] Juutinen, P.; Rossi, J. D., Large solutions for the infinity Laplacian, Adv. Calc. Var., 1, 3, 271-289, 2008 · Zbl 1158.35371
[24] Kohn, R. V.; Serfaty, S., A deterministic-control-based approach to motion by curvature, Comm. Pure Appl. Math., 59, 344-407, 2006 · Zbl 1206.53072
[25] Li, C.; Liu, F., Large solutions of a class of degenerate equations associated with infinity Laplacian, Adv. Nonlinear Stud., 22, 67-87, 2022 · Zbl 1485.35193
[26] Li, Y.; Nirenberg, L., Regularity of the distance function to the boundary, 1-9, 2005, ArXiv:math/0510577v1
[27] López-Soriano, R.; Navarro-Climent, J. C.; Rossi, J. D., The infinity Laplacian with a transport term, J. Math. Anal. Appl., 398, 2, 752-765, 2013 · Zbl 1257.35076
[28] Lu, G.; Wang, P., Inhomogeneous infinity Laplace equation, Adv. Math., 217, 4, 1838-1868, 2008 · Zbl 1152.35042
[29] Lu, G.; Wang, P., A PDE perspective of the normalized infinity Laplacian, Comm. Partial Differential Equations, 33, 10-12, 1788-1817, 2008 · Zbl 1157.35388
[30] Mari, L.; Pessoa, L. F., Maximum principles at infinity and the Ahlfors-Khas’minskii duality: an overview, (Contemporary Research in Elliptic PDEs and Related Topics. Contemporary Research in Elliptic PDEs and Related Topics, Springer INdAM Ser., vol. 33, 2019, Springer: Springer Cham), 419-455 · Zbl 1477.35049
[31] Mari, L.; Pessoa, L. F., Duality between Ahlfors-Liouville and Khas’minskii properties for non-linear equations, Comm. Anal. Geom., 28, 2, 395-497, 2020 · Zbl 1453.53047
[32] Mebrate, B.; Mohammed, A., Infinity-Laplacian type equations and their associated Dirichlet problems, Complex Var. Elliptic Equ., 31, 2018
[33] Mebrate, B.; Mohammed, A., Comparison principles for infinity-Laplace equations in Finsler metrics, Nonlinear Anal., 190, Article 111605 pp., 2020 · Zbl 1433.35100
[34] Peres, Y.; Schramm, O.; Sheffield, S.; Wilson, D., Tug-of-war and the infinity-Laplacian, J. Amer. Math. Soc., 22, 1, 167-210, 2009 · Zbl 1206.91002
[35] Rossi, J. D., Tug-of-war games and PDEs, Proc. Roy. Soc. Edinburgh Sect. A, 141, 2, 319-369, 2011 · Zbl 1242.35091
[36] Shen, Z., Lectures on Finsler Geometry, 2001, World Scientific Publishing: World Scientific Publishing Singapore · Zbl 0974.53002
[37] Wu, Y., Absolute Minimizers in Finsler Metrics, 1995, UC Berkeley, (Ph.D. dissertation)
[38] Wu, B. Y.; Xin, Y. L., Comparison theorems in Finsler geometry and their applications, Math. Ann., 337, 177-196, 2007 · Zbl 1111.53060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.