×

Nonlinear prescribed performance sliding mode control of hypersonic vehicles. (English) Zbl 07900136

Summary: This paper addresses the adaptive saturation prescribed performance control problem for air-breathing hypersonic vehicles with parameter uncertainties and unknown external disturbances. First of all, different from the traditional performance function, a novel class of performance functions is presented without the initial state information, which does not require to reset parameters even if the initial velocity and altitude change. To ensure the successful design of the velocity controller and altitude controller, the constrained errors are transformed into the unconstrained errors by the projection technique. Secondly, the adaptive neural network and the sliding mode control techniques are combined to design the adaptive neural network sliding mode controllers, which guarantee that the velocity and altitude tracking errors can respectively approach the predetermined regions within the identical preset finite time. Finally, the effectiveness of the designed controllers is verified by an example with comparisons.
© 2024 John Wiley & Sons Ltd.

MSC:

93C10 Nonlinear systems in control theory
93B12 Variable structure systems
Full Text: DOI

References:

[1] FidanB, MirmiraniM, IoannouP. Flight dynamics and control of air‐breathing hypersonic vehicles: review and new directions. 12th AIAA International Space Planes and Hypersonic Systems and Technologies. 2003:7081.
[2] ZhaoH, LiR. Typical adaptive neural control for hypersonic vehicle based on higher‐order filters. J Syst Eng Electron. 2020;31(5):1031‐1040.
[3] BolenderM, DomanD. A Non‐Linear Model for the Longitudinal Dynamics of a Hypersonic Air‐breathing Vehicle. doi:10.2514/6.2005‐6255
[4] DickesonJ, RodriguezA, SridharanS, KoradA. Elevator sizing, placement, and control‐relevant tradeoffs for hypersonic vehicles. 2010 8339.
[5] BolenderMA. An overview on dynamics and controls modelling of hypersonic vehicles. 2009;2507‐2512. doi:10.1109/ACC.2009.5159864
[6] HuQ, MengY. Adaptive backstepping control for air‐breathing hypersonic vehicle with actuator dynamics. Aerosp Sci Technol. 2017;67:412‐421.
[7] WuG, MengX. Nonlinear disturbance observer based robust backstepping control for a flexible air‐breathing hypersonic vehicle. Aerosp Sci Technol. 2016;54:174‐182.
[8] XuQ. Adaptive integral terminal third‐order finite‐time sliding‐mode strategy for robust nanopositioning control. IEEE Trans Ind Electron. 2020;68(7):6161‐6170.
[9] YuP, ShtesselY, EdwardsC. Continuous higher order sliding mode control with adaptation of air breathing hypersonic missile. Int J Adapt Control Signal Process. 2016;30(8‐10):1099‐1117. · Zbl 1348.93073
[10] PolyakovA. Nonlinear feedback design for fixed‐time stabilization of linear control systems. IEEE Trans Automat Contr. 2011;57(8):2106‐2110. · Zbl 1369.93128
[11] SunJ, PuZ, YiJ, LiuZ. Fixed‐time control with uncertainty and measurement noise suppression for hypersonic vehicles via augmented sliding mode observers. IEEE Trans Industr Inform. 2019;16(2):1192‐1203.
[12] BechlioulisCP, RovithakisGA. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Trans Automat Contr. 2008;53(9):2090‐2099. · Zbl 1367.93298
[13] BuX, LeiH. Fixed‐time prescribed performance unknown direction control of discrete‐time non‐affine systems without nussbaum‐type function. IEEE Trans Autom Sci Eng. 2023.
[14] ZhangL, CheW, DengC, WuZ. Prescribed performance fuzzy resilient control for nonlinear systems under dos attacks. IEEE Trans Syst Man Cybern Syst. 2022;53(5):3104‐3116.
[15] ShiS, LiY. Event‐based adaptive asymptotic tracking control of nonlinear time‐varying systems with prescribed performance. J Control Decis. 2023;10(3):355‐364.
[16] CaoY, CaoJ, SongY. Practical prescribed time tracking control over infinite time interval involving mismatched uncertainties and non‐vanishing disturbances. Automatica. 2022;136:110050. · Zbl 1480.93279
[17] BuX, JiangB, LeiH. Nonfragile quantitative prescribed performance control of waverider vehicles with actuator saturation. IEEE Trans Aerosp Electron Syst. 2022;58(4):3538‐3548.
[18] ShaoK, ZhengJ. Predefined‐time sliding mode control with prescribed convergent region. IEEE/CAA J Automat Sin. 2022;9(5):934‐936.
[19] TangR, ShaoK, LiangB, XuF. Trigonometric‐type sliding mode control with exact convergence time. IEEE Control Syst Lett. 2022;6:2389‐2394.
[20] ZhangL, CheW, DengC, WuZ. Prescribed performance control for multiagent systems via fuzzy adaptive event‐triggered strategy. IEEE Trans Fuzzy Syst. 2022;30(12):5078‐5090.
[21] DengW, ZhouH, ZhouJ, YaoJ. Neural network‐based adaptive asymptotic prescribed performance tracking control of hydraulic manipulators. IEEE Trans Syst Man Cybern Syst. 2022;53(1):285‐295.
[22] LiangJ, ChenY, LaiN, HeB, MiaoZ, WangY. Low‐complexity prescribed performance control for unmanned aerial manipulator robot system under model uncertainty and unknown disturbances. IEEE Trans Industr Inform. 2021;18(7):4632‐4641.
[23] DongB, LuY, XieW, et al. Robust performance‐prescribed attitude control of foldable wave‐energy powered AUV using optimized Backstepping technique. IEEE Trans Intell Veh. 2023;8(2):1230‐1240. doi:10.1109/TIV.2022.3189009
[24] ZhangS, CheW. Observer‐based self‐triggered resilient control for multiagent systems: a
[( k \]\) ‐connected graph construction approach. IEEE Trans Cybern. 2024;54(2):706‐716. doi:10.1109/TCYB.2023.3337891
[25] ZhangL, CheW, XuS, DengC. Prescribed performance tracking control for 2‐D plane vehicle platoons with actuator faults and saturations. IEEE Trans Veh Technol. 2023;72(11):14040‐14050. doi: 10.1109/TVT.2023.3287295
[26] ZhaoS, WangJ, XuH, WangB. ADP‐based attitude‐tracking control with prescribed performance for hypersonic vehicles. IEEE Trans Aerosp Electron Syst. 2023;59(5):6419‐6431. doi: 10.1109/TAES.2023.3276729
[27] GaoY, LiuJ, WangZ, WuL. Interval type‐2 FNN‐based quantized tracking control for hypersonic flight vehicles with prescribed performance. IEEE Trans Syst Man Cybern Syst. 2019;51(3):1981‐1993.
[28] BuX, LvM, LiuZ. Intelligent safety flight control with variable prescribed performance. IEEE Trans Aerosp Electron Syst. 2024;60(2):2050‐2060. doi:10.1109/TAES.2023.3346804
[29] BuX, LvM, LeiH, CaoJ. Fuzzy neural pseudo control with prescribed performance for Waverider vehicles: a fragility‐avoidance approach. IEEE Trans Cybern. 2023;53(8):4986‐4999. doi:10.1109/TCYB.2023.3255925
[30] BuX, HuaC, LvM, WuZ. Flight control of waverider vehicles with fragility‐avoidance prescribed performance. IEEE Trans Aerosp Electron Syst. 2023;59(5):5248‐5261. doi:10.1109/TAES.2023.3251314
[31] HuangH, LuoC, HanB. Prescribed performance fuzzy back‐stepping control of a flexible air‐breathing hypersonic vehicle subject to input constraints. J Intell Manuf. 2022;33(3):853‐866. doi:10.1007/s10845‐020‐01656‐0
[32] MoudoudB, AissaouiH, DianyM. Fuzzy adaptive sliding mode controller for electrically driven wheeled mobile robot for trajectory tracking task. J Control Decis. 2022;9(1):71‐79.
[33] ShaoK, ZhengJ, TangR, LiX, ManZ, LiangB. Barrier function based adaptive sliding mode control for uncertain systems with input saturation. IEEE/ASME Trans Mechatron. 2022;27(6):4258‐4268. doi:10.1109/TMECH.2022.3153670
[34] MuC, NiZ, SunC, HeH. Air‐breathing hypersonic vehicle tracking control based on adaptive dynamic programming. IEEE Trans Neural Netw Learn Syst. 2016;28(3):584‐598.
[35] PerozziG, RathJJ, SentouhC, FlorisJ, PopieulJC. Lateral shared sliding mode control for lane keeping assist system in steer‐by‐wire vehicles: theory and experiments. IEEE Trans Intell Veh. 2023;8(4):3073‐3082. doi:10.1109/TIV.2021.3097352
[36] LiuJ, LiC. Match and mismatched second‐order sliding mode finite‐time control with simple parameter conditions and its applications. J Control Decis. 2022;9(3):372‐383.
[37] SannerRM, SlotineJJE. Gaussian networks for direct adaptive. Control. 1991;2153‐2159. doi:10.23919/ACC.1991.4791778
[38] DengH, KrsticM. Output‐feedback stochastic nonlinear stabilization. IEEE Trans Automat Contr. 1999;44(2):328‐333. · Zbl 0958.93095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.