×

Predefined-time tracking control of multiplicative systems. (English) Zbl 07900064

Summary: This article describes a control approach for obtaining predefined-time robust tracking in multiplicative systems despite positive, bounded, and unknown multiplicative disturbances. The proposed approach is distinguished by imposing predefined-time convergence, a topic previously studied in conventional calculus in the context of multiplicative systems. Multiplicative calculus is recognized as a beneficial tool that complements standard calculus by simplifying the modeling and comprehension of numerous processes. Simulations are carried out to illustrate that the given control strategy enforces convergence before a predefined time instant and, while inducing robustness against system uncertainties. The findings of this article pave the way for further research into predefined-time synchronization of multiplicative oscillator systems, which would bring promising implications for data encryption and secure communication.
© 2024 The Author(s). International Journal of Robust and Nonlinear Control published by John Wiley & Sons Ltd.

MSC:

93D40 Finite-time stability
93B12 Variable structure systems

References:

[1] SertacG, EmrahY, CigdemYA. Multiplicative derivative and its basic properties on time scales. Math Methods Appl Sci. 2022;45(4):2097‐2109. · Zbl 1527.26020
[2] DickS. A multiplicative calculus. Problems Res Issues Math Undergraduate Stud. 1999;9(4):310‐326.
[3] MichaelG, RobertK. Non‐Newtonian Calculus: A Self‐Contained. Elementary Exposition of the Authors’ Investigations.; 1972.
[4] LucF, HansA. Multiplicative calculus in biomedical image analysis. J Math Imaging Vision. 2012;42:64‐75. · Zbl 1255.92014
[5] Filip DianaA, CyrilleP. A non‐Newtonian examination of the theory of exogenous economic growth. Université d’Orléans. 2014:1‐17.
[6] EmineM, YusufG. Multiplicative adams bashforth-moulton methods. Numerical Algorithms. 2011;57:425‐439. · Zbl 1221.65167
[7] MustafaR, AliÖ, EmineM. Multiplicative finite difference methods. Q Appl Math. 2009;67(4):745‐754. · Zbl 1187.65083
[8] EmineM, AliO. Exponential approximations on multiplicative calculus. Proce Jangjeon Math Soc. 2009;12(2):227‐236. · Zbl 1202.26003
[9] Bashirov AgamirzaE, EmineM, YücelT, AliÖ. On modeling with multiplicative differential equations. Appl Math. 2011;26:425‐438. · Zbl 1265.00007
[10] Bashirov AgamirzaE, SajedehN. On complex multiplicative integration. TWMS J Appl Eng Math. 2017;7(1):82‐93. · Zbl 1377.30033
[11] AliU. Multiplicative type complex calculus as an alternative to the classical calculus. Comput Math Appl. 2010;60(10):2725‐2737. · Zbl 1207.26003
[12] DorotaA, MarekR. Lyapunov type stability and Lyapunov exponent for exemplary multiplicative dynamical systems. Nonlinear Dyn. 2008;54:345‐354. · Zbl 1170.70010
[13] Bashirov AgamirzaE, MisirliKE, AliÖ. Multiplicative calculus and its applications. J Math Anal Appl. 2008;337(1):36‐48. · Zbl 1129.26007
[14] DiegoS‐TJ, DavidG‐G, EstebanL, LoukianovAG. A class of predefined‐time stable dynamical systems. IMA J Math Control Inf. 2018;35(Supplement_1):i1‐i29. · Zbl 1402.93192
[15] EstebanJ‐R, JonathanM‐VA, DiegoS‐TJ, MichaelD, LoukianovAG. A Lyapunov‐like characterization of predefined‐time stability. IEEE Trans Autom Control. 2020;65(11):4922‐4927. · Zbl 1536.93760
[16] El AbedA. Predefined‐time synchronization of chaotic systems with different dimensions and applications. Chaos, Solitons Fractals. 2021;147:110988.
[17] ChuanC, LingM, ZhongqiangL, BaolinQ, ZhaoH, LijuanX. Predefined‐time synchronization of competitive neural networks. Neural Netw. 2021;142:492‐499. · Zbl 1526.93218
[18] JunkangN, LingL, YangT, ChongxinL. Predefined‐time consensus tracking of second‐order multiagent systems. IEEE Trans Syst Man Cybern Syst. 2019;51(4):2550‐2560.
[19] Becerra HéctorM, Vázquez CarlosR, GustavoA, JosafatD. Predefined‐time convergence control for high‐order integrator systems using time base generators. IEEE Trans Control Syst Technol. 2017;26(5):1866‐1873.
[20] An‐MinZ, YangyangL. Attitude tracking control of spacecraft with preset‐time preset‐bounded convergence. Int J Robust Nonlinear Control. 2022;32(18):10162‐10179. · Zbl 1529.93014
[21] YujuanW, YongduanS. Leader‐following control of high‐order multi‐agent systems under directed graphs: Pre‐specified finite time approach. Automatica. 2018;87:113‐120. · Zbl 1378.93014
[22] DongY, An‐MinZ, ZhaoweiS. Predefined‐time predefined‐bounded attitude tracking control for rigid spacecraft. IEEE Trans Aerosp Electron Syst. 2021;58(1):464‐472.
[23] JonathanM‐VA, DiegoS‐TJ, EstebanJ‐R, LoukianovAG. Predefined‐time robust stabilization of robotic manipulators. IEEE/ASME Trans Mechatron. 2019;24(3):1033‐1040.
[24] RodrigoA‐L, RichardS, HernanH, DavidG‐G. On inherent limitations in robustness and performance for a class of prescribed‐time algorithms. Automatica. 2023;158:111284. · Zbl 1530.93078
[25] KhalilHK. Nonlinear Systems. Prentice Hall; 2002. · Zbl 1003.34002
[26] DavisPJ. Gamma function and related functions. Handbook of Mathematical Functions with Formulas, graphs, and Mathematical Tables. Dover Publications; 1972:253‐293. · Zbl 0543.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.