×

Modularity in Argyres-Douglas theories with \(a = c\). (English) Zbl 07899790

Summary: We consider a family of Argyres-Douglas theories, which are 4D \(\mathcal{N} = 2\) strongly coupled superconformal field theories (SCFTs) but share many features with 4D \(\mathcal{N} = 4\) super-Yang-Mills theories. In particular, the two central charges of these theories are the same, namely \(a = c\). We derive a simple and illuminating formula for the Schur index of these theories, which factorizes into the product of a Casimir term and a term referred to as the Schur partition function. While the former is controlled by the anomaly, the latter is identified with the vacuum character of the corresponding chiral algebra and is expected to satisfy the modular linear differential equation. Our simple expression for the Schur partition function, which can be regarded as the generalization of MacMahon’s generalized sum-of-divisor function, allows one to numerically compute the series expansions efficiently, and furthermore find the corresponding modular linear differential equation. In a special case where the chiral algebra is known, we are able to derive the corresponding modular linear differential equation using Zhu’s recursion relation. We further study the solutions to the modular linear differential equations and discuss their modular transformations. As an application, we study the high temperature limit or the Cardy-like limit of the Schur index using its simple expression and modular properties, thus shedding light on the 1/4-BPS microstates of genuine \(\mathcal{N} = 2\) SCFTs with \(a = c\) and their dual quantum gravity via the AdS/CFT correspondence.

MSC:

81Txx Quantum field theory; related classical field theories
11Fxx Discontinuous groups and automorphic forms
17Bxx Lie algebras and Lie superalgebras

References:

[1] Beem, C., Infinite chiral symmetry in four dimensions, Commun. Math. Phys., 336, 1359, 2015 · Zbl 1320.81076 · doi:10.1007/s00220-014-2272-x
[2] Razamat, SS, On a modular property of N = 2 superconformal theories in four dimensions, JHEP, 10, 191, 2012 · Zbl 1397.81320 · doi:10.1007/JHEP10(2012)191
[3] Bobev, N.; Bullimore, M.; Kim, H-C, Supersymmetric Casimir energy and the anomaly polynomial, JHEP, 09, 142, 2015 · Zbl 1388.81777
[4] Cecotti, S.; Del Zotto, M., Infinitely many N = 2 SCFT with ADE flavor symmetry, JHEP, 01, 191, 2013 · Zbl 1342.81563 · doi:10.1007/JHEP01(2013)191
[5] Cecotti, S.; Del Zotto, M.; Giacomelli, S., More on the N = 2 superconformal systems of type D_p(G), JHEP, 04, 153, 2013 · Zbl 1342.81564 · doi:10.1007/JHEP04(2013)153
[6] Buican, M.; Nishinaka, T., N = 4 SYM, Argyres-Douglas theories, and an exact graded vector space isomorphism, JHEP, 04, 028, 2022 · Zbl 1522.81602 · doi:10.1007/JHEP04(2022)028
[7] Kang, MJ; Lawrie, C.; Song, J., Infinitely many 4D N = 2 SCFTs with a = c and beyond, Phys. Rev. D, 104, 105005, 2021 · doi:10.1103/PhysRevD.104.105005
[8] Carta, F.; Giacomelli, S.; Mekareeya, N.; Mininno, A., Comments on non-invertible symmetries in Argyres-Douglas theories, JHEP, 07, 135, 2023 · Zbl 07744280 · doi:10.1007/JHEP07(2023)135
[9] Bourdier, J.; Drukker, N.; Felix, J., The exact Schur index of N = 4 SYM, JHEP, 11, 210, 2015 · Zbl 1388.81494 · doi:10.1007/JHEP11(2015)210
[10] Hatsuda, Y.; Okazaki, T., N = 2^*Schur indices, JHEP, 01, 029, 2023 · Zbl 1540.81153 · doi:10.1007/JHEP01(2023)029
[11] Beem, C.; Rastelli, L., Vertex operator algebras, Higgs branches, and modular differential equations, JHEP, 08, 114, 2018 · Zbl 1396.81191 · doi:10.1007/JHEP08(2018)114
[12] Zhu, Y., Vertex operator algebras, elliptic functions and modular forms, J. Amer. Math. Soc., 9, 237, 1996 · Zbl 0854.17034 · doi:10.1090/S0894-0347-96-00182-8
[13] Buican, M.; Nishinaka, T., Conformal manifolds in four dimensions and chiral algebras, J. Phys. A, 49, 465401, 2016 · Zbl 1353.81105 · doi:10.1088/1751-8113/49/46/465401
[14] B. Feigin, E. Feigin and I. Tipunin, Fermionic formulas for (1, p) logarithmic model characters in ϕ_2,1quasiparticle realisation, arXiv:0704.2464 [INSPIRE]. · Zbl 1242.81120
[15] Eleftheriou, G., Root of unity asymptotics for Schur indices of 4d Lagrangian theories, JHEP, 01, 081, 2023 · Zbl 1540.81151 · doi:10.1007/JHEP01(2023)081
[16] A. Arabi Ardehali, M. Martone and M. Rosselló, High-temperature expansion of the Schur index and modularity, arXiv:2308.09738 [INSPIRE].
[17] Argyres, PC; Douglas, MR, New phenomena in SU(3) supersymmetric gauge theory, Nucl. Phys. B, 448, 93, 1995 · Zbl 1009.81572 · doi:10.1016/0550-3213(95)00281-V
[18] Xie, D., General Argyres-Douglas theory, JHEP, 01, 100, 2013 · Zbl 1342.81621 · doi:10.1007/JHEP01(2013)100
[19] Song, J.; Xie, D.; Yan, W., Vertex operator algebras of Argyres-Douglas theories from M5-branes, JHEP, 12, 123, 2017 · Zbl 1383.81170 · doi:10.1007/JHEP12(2017)123
[20] M. Del Zotto, C. Vafa and D. Xie, Geometric engineering, mirror symmetry and \(6{d}_{\left(1,0\right)}\to 4{d}_{\left(\mathcal{N}=2\right)} \), JHEP11 (2015) 123 [arXiv:1504.08348] [INSPIRE].
[21] C. Closset, S. Schäfer-Nameki and Y.-N. Wang, Coulomb and Higgs branches from canonical singularities. Part I. Hypersurfaces with smooth Calabi-Yau resolutions, JHEP04 (2022) 061 [arXiv:2111.13564] [INSPIRE]. · Zbl 1522.81613
[22] Kang, MJ, Higgs branch, Coulomb branch, and Hall-Littlewood index, Phys. Rev. D, 106, 106021, 2022 · doi:10.1103/PhysRevD.106.106021
[23] Y. Wang and D. Xie, Classification of Argyres-Douglas theories from M5 branes, Phys. Rev. D94 (2016) 065012 [arXiv:1509.00847] [INSPIRE].
[24] MacMahon, PA, Divisors of numbers and their continuations in the theory of partitions, Proc. Lond. Math. Soc., S2-19, 75, 1921 · JFM 47.0117.01 · doi:10.1112/plms/s2-19.1.75
[25] G.E. Andrews and S.C.F. Rose, MacMahon’s sum-of-divisors functions, Chebyshev polynomials, and Quasi-modular forms, arXiv:1010.5769. · Zbl 1337.11002
[26] B. Feigin, E. Feigin and I. Tipunin, Fermionic formulas for (1, p) logarithmic model characters in ϕ_2,1quasiparticle realisation, arXiv:0704.2464. · Zbl 1242.81120
[27] B.L. Feigin and I.Y. Tipunin, Characters of coinvariants in (1, p) logarithmic models, arXiv:0805.4096 [INSPIRE]. · Zbl 1225.81122
[28] Cardy, JL, Operator content of two-dimensional conformally invariant theories, Nucl. Phys. B, 270, 186, 1986 · Zbl 0689.17016 · doi:10.1016/0550-3213(86)90552-3
[29] Di Pietro, L.; Komargodski, Z., Cardy formulae for SUSY theories in d = 4 and d = 6, JHEP, 12, 031, 2014 · Zbl 1390.81586 · doi:10.1007/JHEP12(2014)031
[30] M. Buican and T. Nishinaka, On the superconformal index of Argyres-Douglas theories, J. Phys. A49 (2016) 015401 [arXiv:1505.05884] [INSPIRE]. · Zbl 1342.81264
[31] Arabi Ardehali, A., High-temperature asymptotics of supersymmetric partition functions, JHEP, 07, 025, 2016 · Zbl 1390.81557 · doi:10.1007/JHEP07(2016)025
[32] Zheng, H.; Pan, Y.; Wang, Y., Surface defects, flavored modular differential equations, and modularity, Phys. Rev. D, 106, 105020, 2022 · doi:10.1103/PhysRevD.106.105020
[33] S. Choi, J. Kim, S. Kim and J. Nahmgoong, Large AdS black holes from QFT, arXiv:1810.12067 [INSPIRE].
[34] C.-M. Chang, Y.-H. Lin and J. Wu, On \(\frac{1}{8} \)-BPS black holes and the chiral algebra of \(\mathcal{N} = 4\) SYM, arXiv:2310.20086 [INSPIRE].
[35] J.H. Bruinier, G. van der Geer, G. Harder and D. Zagier, The 1-2-3 of modular forms, Springer, Berlin, Heidelberg, Germany (2008) [doi:10.1007/978-3-540-74119-0]. · Zbl 1197.11047
[36] H. Hauser, Fuchsian differential equations, notes, Fall 2022.
[37] Gaberdiel, MR; Keller, CA, Modular differential equations and null vectors, JHEP, 09, 079, 2008 · Zbl 1245.81240 · doi:10.1088/1126-6708/2008/09/079
[38] K. Thielemans, An algorithmic approach to operator product expansions, W algebras and W strings, Ph.D. thesis, Leuven U., Leuven, Belgium (1994) [hep-th/9506159] [INSPIRE].
[39] Cordova, C.; Shao, S-H, Schur indices, BPS particles, and Argyres-Douglas theories, JHEP, 01, 040, 2016 · Zbl 1388.81116 · doi:10.1007/JHEP01(2016)040
[40] Song, J., Superconformal indices of generalized Argyres-Douglas theories from 2d TQFT, JHEP, 02, 045, 2016 · Zbl 1388.81701 · doi:10.1007/JHEP02(2016)045
[41] Thielemans, K., A Mathematica package for computing operator product expansions, Int. J. Mod. Phys. C, 2, 787, 1991 · Zbl 0940.81500 · doi:10.1142/S0129183191001001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.