×

Mittag-Leffler-Hyers-Ulam stability for a first- and second-order nonlinear differential equations using Fourier transform. (English) Zbl 07899343

In this paper, the authors demonstrate the Hyers-Ulam and Hyers-Ulam-Rassias stability for first- and second-order nonlinear differential equations with initial conditions using the Fourier transform. They further extend the results to the Mittag-Leffler-Hyers-Ulam and Mittag-Leffler-Hyers-Ulam-Rassias stability.
Reviewer: Tunç Osman (Van)

MSC:

34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
34D10 Perturbations of ordinary differential equations
42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type

References:

[1] S. M. Ulam, Problem in Modern Mathematics, John Wiley & Sons, New York, 1964. · Zbl 0137.24201
[2] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27 (1941), no. 4, 222-224, DOI: https://doi.org/10.1073/pnas.27.4.222. · JFM 67.0424.01
[3] T. M. Rassias, On the stability of the linear mappings in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300, DOI: https://doi.org/10.2307/2042795. · Zbl 0398.47040
[4] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), no. 1-2, 64-66, DOI: https://doi.org/10.2969/jmsj/00210064. · Zbl 0040.35501
[5] D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. 57 (1951), no. 4, 223-237, DOI: https://doi.org/10.1090/S0002-9904-1951-09511-7. · Zbl 0043.32902
[6] N. Brillouet-Belluot, J. Brzdek, and K. Cieplinski, On some recent developments in Ulam’s type stability, Abs. Appl. Anal. 2012 (2012), 41, DOI: https://doi.org/10.1155/2012/716936. · Zbl 1259.39019
[7] M. Burger, N. Ozawa, and A. Thom, On Ulam stability, Israel J. Math 193 (2013), 109-129, DOI: https://doi.org/10.1007/s11856-012-0050-z. · Zbl 1271.22003
[8] L. Cǎdariu, L. Gǎvruţa, and P. Gǎvruţa, Fixed points and generalized Hyers-Ulam stability, Abs. Appl. Anal. 2012 (2012), 10, DOI: https://doi.org/10.1155/2012/712743. · Zbl 1252.39030
[9] S. M. Jung, Hyers-Ulam-Rassias stability of functional equation in nonlinear analysis, Optimization Application, Springer, New York, 2011. · Zbl 1221.39038
[10] M. Almahalebi, A. Chahbi, and S. Kabbaj, A Fixed point approach to the stability of a bicubic functional equations in 2-Banach spaces, Palestine J. Math. 5 (2016), no. 2, 220-227. · Zbl 1346.39038
[11] A. Ponmana Selvan, S. Sabarinathan, and A. Selvam, Approximate solution of the special type differential equation of higher-order using Taylor’s series, J. Math Comp. Sci. 27 (2022), no. 2, 131-141, DOI: https://doi.org/10.22436/jmcs.027.02.04.
[12] R. Murali, J. M. Rassias, and V. Vithya, The general solution and stability of nonadecic functional equation in matrix normed spaces, Malaya J. Matematik 5 (2017), 416-427, DOI: https://doi.org/10.26637/mjm502/020.
[13] K. Ravi, J. M. Rassias, and B. V. Senthil Kumar, Ulam-Hyers stability of undecic functional equation in quasi-beta-normed spaces fixed point method, Tbilisi Math. Sci. 9 (2016), no. 2, 83-103, DOI: https://doi.org/10.1515/tmj-2016-0022. · Zbl 1352.39024
[14] J. M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Functional Anal. 46 (1982), no. 1, 126-130, DOI: https://doi.org/10.1016/0022-1236(82)90048-9. · Zbl 0482.47033
[15] J. Huang, S. M. Jung, and Y. Li, On Hyers-Ulam stability of nonlinear differential equations, Bull. Korean Math. Soc. 52 (2015), no. 2, 685-697. DOI: http://dx.doi.org/10.4134/BKMS.2015.52.2.685. · Zbl 1370.34098
[16] M. Obloza, Hyers stability of the linear differential equation, Rocznik Naukowo-Dydaktyczny, Prace Matematyczne 13 (1993), 259-270. · Zbl 0964.34514
[17] M. Obloza, Connections between Hyers and Lyapunov stability of the ordinary differential equations, Rocznik Naukowo-Dydaktyczny, Prace Matematyczne 14 (1997), 141-146, http://hdl.handle.net/11716/8211. · Zbl 1159.34332
[18] C. Alsina and R. Ger, On some inequalities and stability results related to the exponential function, J. Inequl. Appl. 2 (1998), 373-380. · Zbl 0918.39009
[19] S. M. Jung, Hyers-Ulam stability of linear differential equation of first-order, Appl. Math. Lett. 17 (2004), no. 10, 1135-1140, DOI: https://doi.org/10.1016/j.aml.2003.11.004. · Zbl 1061.34039
[20] S. M. Jung, Hyers-Ulam stability of linear differential equations of first-order (III), J. Math. Anal. Appl. 311 (2005), no. 1, 139-146, DOI: https://doi.org/10.1016/j.jmaa.2005.02.025. · Zbl 1087.34534
[21] S. M. Jung, Hyers-Ulam stability of linear differential equations of first-order (II), Appl. Math. Lett. 19 (2006), no. 9, 854-858, DOI: https://doi.org/10.1016/j.aml.2005.11.004. · Zbl 1125.34328
[22] S. M. Jung, Hyers-Ulam stability of a system of first-order linear differential equations with constant coefficients, J. Math. Anal. Appl. 320 (2006), 549-561, DOI: https://doi.org/10.1016/j.jmaa.2005.07.032. · Zbl 1106.34032
[23] Q. H. Alqifiary and S. M. Jung, Laplace transform and generalized Hyers-Ulam stability of linear differential equations, Electron. J. Differential Equations 2014 (2014), 1-11. https://ejde.math.txstate.edu/. · Zbl 1290.34059
[24] J. M. Rassias, R. Murali, and A. Ponmana Selvan, Mittag-Leffler-Hyers-Ulam stability of linear differential equations using Fourier transforms, J. Comp. Anal. Appl. 29 (2021), no. 1, 68-85.
[25] R. Murali and A. Ponmana Selvan, Fourier transforms and Ulam stabilities of linear differential equations, Front. Funct. Equ. Anal. Inequalit. 2019 (2019), 195-217, DOI: https://doi.org/10.1007/978-3-030-28950-8_12. · Zbl 1451.34075
[26] R. Murali, A. Ponmana Selvan, and C. Park, Ulam stability of linear differential equations using Fourier transform, AIMS Math. 5 (2019), no. 2, 766-780. DOI: http://dx.doi.org/10.3934/math.2020052. · Zbl 1484.34058
[27] Y. Li and Y. Shen, Hyers-Ulam stability of linear differential equations of second-order, Appl. Math. Lett. 23 (2010), no. 3, 306-309, DOI: https://doi.org/10.1016/j.aml.2009.09.020. · Zbl 1188.34069
[28] I. Fakunle and P. O. Arawomo, Hyers-Ulam stability of certain class of nonlinear second-order differential equations, Global J. Pure Appl. Math. 11 (2018), no. 1, 55-65. https://api.semanticscholar.org/CorpusID:198938167.
[29] J. Xue, Hyers-Ulam stability of linear differential equations of second-order with constant coefficient, Italian J. Pure Appl. Math. 32 (2014), 419-424. · Zbl 1333.34095
[30] M. N. Qarawani, Hyers-Ulam stability of linear and nonlinear differential equation of second-order, Int. J. Appl. Math. Res. 1 (2012), no. 4, 422-432.
[31] M. N. Qarawani, Hyers-Ulam stability of a generalized second-order nonlinear differential equation, Appl. Math. 3 (2012), no. 12, 1857-1861. DOI: http://dx.doi.org/10.4236/am.2012.312252.
[32] S. M. Jung, Approximate solution of a linear differential equation of third order, Bull. Malaysian Math. Soc. Ser 2 35 2012, no. 4, 1063-1073. · Zbl 1253.34023
[33] P. Gǎvruţa, S. M. Jung, and Y. Li, Hyers-Ulam stability for second-order linear differential equations with boundary conditions, Electron. J. Differential Equations 2011 (2011), 1-5. · Zbl 1230.34020
[34] V. Kalvandi, N. Eghbali, and J. M. Rassias, Mittag-Leffler-Hyers-Ulam stability of fractional differential equations of second-order, J. Math. Extension 13 (2019), 1-15.
[35] R. Murali and A. Ponmana Selvan, Hyers-Ulam stability of nth order linear differential equation, Proyecciones: J. Math. 38 (2019), no. 3, 553-566. · Zbl 1448.34114
[36] R. Murali and A. Ponmana Selvan, Hyers-Ulam stability of a free and forced vibrations, Kragujevac J. Math. 44 (2020), no. 2, 299-312. · Zbl 1488.34316
[37] A. Zada, S. Faisal, and Y. Li, Hyers-Ulam-Rassias stability of non-linear delay differential equations, J. Nonlinear Sci. Appl. 10 (2017), 504-510, DOI: http://dx.doi.org/10.22436/jnsa.010.02.15. · Zbl 1412.35032
[38] J. H. Huang and Y. Li, Hyers-Ulam stability of delay differential equations of first-order, Mathematische Nachrichten 289 (2016), no. 1, 60-66. · Zbl 1339.34082
[39] H. Khan, Y. Li, W. Chen, D. Baleanu, and A. Khan, Existence theorems and Hyers-Ulam stability for a coupled system of fractional differential equations with p-Laplacian operator, Boundary Value Problems 2017 (2017), 157, DOI: http://dx.doi.org/10.1186/s13661-017-0878-6. · Zbl 1483.35320
[40] H. Khan, W. Chen, A. Khan, T. S. Khan, and Q. M. Al-Madlal, Hyers-Ulam stability and existence criteria for coupled fractional differential equations involving p-Laplacian operator, Adv. Differential Equations 2018 (2018), 455, DOI: https://doi.org/10.1186/s13662-018-1899-x. · Zbl 1448.34019
[41] H. Khan, T. A. Jawad, M. Muhammad Aslam, R. A. Khan, and A. Khan, Existence of positive solution and Hyers-Ulam stability for a nonlinear singular-delay-fractional differential equation, Adv. Differential Equations 2019 (2019), 104, DOI: https://doi.org/10.1186/s13662-019-2054-z. · Zbl 1459.34024
[42] H. Khan, K. Alam, H. Gulzar, S. Etemad, and S. Rezapour, A case study of fractal-fractional tuberculosis model in China: Existence and stability theories along with numerical simulations, Math. Comput. Simulat. 198 (2022), 455-473, DOI: https://doi.org/10.1016/j.matcom.2022.03.009. · Zbl 1540.92199
[43] H. Khan, J. F. Gomez-Aguilar, A. Alkhazzan, and A. Khan, A fractional order HIV-TB coinfection model with nonsingular Mittag-Leffler law, Math. Methods Appl. Sci. 43 (2020), no. 6, 1-21, DOI: https://doi.org/10.1002/mma.6155. · Zbl 1452.92039
[44] H. Khan, W. Chen, and H. Sun, Analysis of positive solution and Hyers-Ulam stability for a class of singular fractional differential equations with p-Laplacian in Banach space, Math. Methods Appl. Sci. 41 (2018), no. 9, 1-11, DOI: https://doi.org/10.1002/mma.4835. · Zbl 1394.34017
[45] R. Murali and A. Ponmana Selvan, Mittag-Leffler-Hyers-Ulam stability of a linear differential equations of first-order using Laplace transforms, Canadian J. Appl. Math. 2 (2020), no. 2, 47-59.
[46] A. Ponmana Selvan, G. Ganapathy, M. Saravanan, and R. Veerasivaji, Laplace transform and Hyers-Ulam stability of differential equation for logistic growth in a population model, Commun. Korean Math. Soc. 38 (2023), no. 4, 1163-1173. · Zbl 1528.34045
[47] R. Murali, A. Ponmana Selvan, C. Park, and J. R. Lee, Aboodh transform and the stability of second-order linear differential equations, Adv. Differential Equations 2021 (2021), 296, DOI: https://doi.org/10.1186/s13662-021-03451-4. · Zbl 1494.34128
[48] R. Murali, A. Ponmana Selvan, S. Baskaran, C. Park, and J. R. Lee, Hyers-Ulam stability of first-order linear differential equations using Aboodh transform, J. Inequal. Appl. 2021 (2021), 133, DOI: https://doi.org/10.1186/s13660-021-02670-3. · Zbl 1504.34129
[49] S. Sabarinathan, D. Muralidharan, and A. Ponmana Selvan, Application of Mahgoub integral transform to Bessel’s differential equations, Commun. Math. Appl. 12 (2021), no. 4, 919-930, DOI: http://doi.org/10.26713/cma.v12i4.1645.
[50] S. M. Jung, A. Ponmana Selvan, and R. Murali, Mahgoub transform and Hyers-Ulam stability of first-order linear differential equations, J. Math. Inequal. 15 (2021), no. 3, 1201-1218, DOI: http://dx.doi.org/10.7153/jmi-2021-15-80. · Zbl 1480.34009
[51] R. Murali, A. Ponmana Selvan, and S. Baskaran, Stability of linear differential equation higher-order using Mahgoub transforms, J. Math. Comput. sci. 30 (2023), 1-9, DOI: https://doi.org/10.22436/jmcs.030.01.01.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.