×

On Kantorovich variant of Brass-Stancu operators. (English) Zbl 07899337

Summary: In this study, we deal with Kantorovich-type generalization of the Brass-Stancu operators. For the sequence of these operators, we study \(L^p\)-convergence and give some upper estimates for the \(L^p\)-norm of the approximation error via first-order averaged modulus of smoothness and the first-order \(K\)-functional. Moreover, we show that the Kantorovich generalization of each Brass-Stancu operator satisfies variation detracting property and is bounded with respect to the norm of the space of functions of bounded variation on \([0, 1]\). Finally, we present graphical and numerical examples to compare the convergence of these operators to given functions under different parameters.

MSC:

41A36 Approximation by positive operators
41A25 Rate of convergence, degree of approximation
26A45 Functions of bounded variation, generalizations

References:

[1] D. D. Stancu, Quadrature formulas constructed by using certain linear positive operators, Numerical Integration (Proc. Conf., Oberwolfach, 1981), ISNM vol. 57, Birkhäuser Verlag, Basel, 1982, pp. 241-251, . · Zbl 0493.41038 · doi:10.1007/978-3-0348-6308-7_23
[2] D. D. Stancu, Approximation of functions by means of a new generalized Bernstein operator, Calcolo 20 (1983), no. 2, 211-229, . · Zbl 0544.41022 · doi:10.1007/BF02575593
[3] O. Agratini, Application of divided differences to the study of monotonicity of a sequence of D.D. Stancu polynomials, Rev. Anal. Numér. Théor. Approx. 25 (1996), no. 1, 3-10, https://ictp.acad.ro/jnaat/journal/article/view/1996-vol25-nos1-2-art1. · Zbl 0888.41017
[4] H. H. Gonska, On the composition and decomposition of positive linear operators, in: V. V. Kovtunets, et al., (ed.), Approximation Theory and its Applications. Proc. Int. Conf. ded. to the memory of Dzyadyk, Kiev, Ukraine, May 27-31, 1999. Pr. Inst. Mat. Nats. Akad. Nauk Ukr., Mat. Zastos. 31 (2000), 161-180. · Zbl 1033.47027
[5] L. Yun and X. Xiang, On shape-preserving properties and simultaneous approximation of Stancu operator, Anal. Theory Appl. 24 (2008), no. 2, 195-204, . · Zbl 1174.41011 · doi:10.1007/s10496-008-0195-0
[6] H. Brass, Eine Verallgemeinerung der Bernsteinschen Operatoren, Abh. Math. Semin. Univ. Hambg. 38 (1971), 111-122, . · Zbl 0219.41002 · doi:10.1007/BF02995913
[7] L. V. Kantorovich, Sur certains développements suivant les polynômes de la forme de S. Bernstein, I et II, C. R. Acad. Sci. USSR 20 (1930), 563-568 et 595-600. · JFM 57.1393.02
[8] G. G. Lorentz, Bernstein Polynomials, University of Toronto Press, Toronto, 1953 (2.ed., Chelsea Publishing Co., New York, 1986). · Zbl 0051.05001
[9] T. Bostancı and G. Başcanbaz-Tunca, On Stancu operators depending on a non-negative integer, Filomat 36 (2022), no. 18, 6129-6138, . · doi:10.2298/FIL2218129B
[10] C. Bardaro, P. L. Butzer, R. L. Stens, and G. Vinti, Convergence in variation and rates of approximation for Bernstein-type polynomials and singular convolution integrals, Analysis 23 (2003), 299-340, . · Zbl 1049.41015 · doi:10.1524/anly.2003.23.4.299
[11] D. D. Stancu, A note on a multiparameter Bernstein-type approximating operator, Mathematica (Cluj) 49 (1984), no. 2, 153-177. · Zbl 0562.41016
[12] M. T. Dimitriu, Some results on global smoothness preservation by Stancu-Kantorovich operators, J. Sci. Arts 15 (2015), no. 3, 219-224.
[13] A. Kajla, The Kantorovich variant of an operator defined by D.D. Stancu, Appl. Math. Comput. 316 (2018), 400-408, . · Zbl 1426.41025 · doi:10.1016/j.amc.2017.08.021
[14] F. Altomare, Korovkin-type theorems and approximation by positive linear operators, Surv. Approx. Theory 5 (2010), 92-164. · Zbl 1285.41012
[15] M. W. Müller, Approximation by Cheney-Sharma-Kantorovi č polynomials in the Lp-metric, Rocky Mountain J. Math. 19 (1989), no. 1, 281-291. · Zbl 0691.41024
[16] M. W. Müller, Die Güte der Lp -Approximation durch Kantorovič-polynome, Math. Z. 151 (1976), 243-247. · Zbl 0322.41012
[17] E. Quak, Lp-error estimates for positive linear operators using the second-order τ-modulus, Anal. Math. 14 (1988), 259-272. · Zbl 0696.41018
[18] J. Peetre, A theory of interpolation of normed spaces, Lecture Notes, Brazilia, 1963.
[19] H Johnen, Inequalities connected with the moduli of smoothness, Mat. Vesnik 9 (1972), no. 24, 289-303. · Zbl 0254.26005
[20] B. Sendov and V. A. Popov, Averaged moduli of smoothness, Bulgarian Mathematical Monographs, vol. 4, Publ. House Bulg. Acad. Sci. Sofia, 1983. · Zbl 0542.41018
[21] F. Altomare and M. Campiti, Korovkin-Type Approximation Theory and Its Applications, Walter de Gruyter, Berlin-New York, 1994. · Zbl 0924.41001
[22] F. Altomare, M. Cappelletti Montano, V. Leonessa, and I. Raşa, A generalization of Kantorovich operators for convex compact subsets, Banach J. Math. Anal. 11 (2017), no. 3, 591-614, . · Zbl 1383.41003 · doi:10.1215/17358787-2017-0008
[23] V. A. Popov, On the quantitative Korovkin theorems in Lp, Compt. Rend. Acad. Bulg. Sci. 35 (1982), 897-900. · Zbl 0512.41018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.