×

Incremental quaternion singular value decomposition and its application for low rank quaternion matrix completion. (English) Zbl 07899242

Summary: Computing the optimal low rank approximations of quaternion matrices is the key target in many quaternion matrix related problems including color images inpainting and recognition, which can be reconstructed by some dominant singular values of quaternion matrices. However, the singular value decomposition of large-scale quaternion matrices requires expensive storage and computational costs. In this paper, we propose an incremental quaternion singular value decomposition (IQSVD) method for a class of quaternion matrices, where the number of columns far exceeds the number of rows, to improve computing efficiency. What’s more, based on IQSVD, we consider the low rank quaternion matrix completion problem and design a proximal linearized minimization algorithm with convergence guarantee to solve it. Numerical experiments on synthetic data and real-world videos illustrate the efficiency of IQSVD and the proposed proximal linearized minimization algorithm involved IQSVD.

MSC:

15A18 Eigenvalues, singular values, and eigenvectors
15A69 Multilinear algebra, tensor calculus
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
Full Text: DOI

References:

[1] Acar, E.; Dunlavy, DM; Kolda, TG; Mørup, M., Scalable tensor factorizations for incomplete data, Chemometr Intell Lab Syst, 106, 1, 41-56, 2011 · doi:10.1016/j.chemolab.2010.08.004
[2] Beck, A., First-order methods in optimization, 2017, Philadelphia: SIAM, Philadelphia · Zbl 1384.65033 · doi:10.1137/1.9781611974997
[3] Bolte, J.; Sabach, S.; Teboulle, M., Proximal alternating linearized minimization for nonconvex and nonsmooth problems, Math Program, 146, 1, 459-494, 2014 · Zbl 1297.90125 · doi:10.1007/s10107-013-0701-9
[4] Cai, J-F; Candès, EJ; Shen, Z., A singular value thresholding algorithm for matrix completion, SIAM J Optim, 20, 4, 1956-1982, 2010 · Zbl 1201.90155 · doi:10.1137/080738970
[5] Chen, J.; Huang, W., An iterative algorithm for low-rank tensor completion problem with sparse noise and missing values, Numer Linear Algebra Appl, 31, 2544, 2023 · Zbl 07893429 · doi:10.1002/nla.2544
[6] Chen, Y.; Xiao, X.; Zhou, Y., Low-rank quaternion approximation for color image processing, IEEE Trans Image Process, 29, 1426-1439, 2019 · Zbl 07585964 · doi:10.1109/TIP.2019.2941319
[7] Clarke, FH, Optimization and nonsmooth analysis, 1990, Philadelphia: SIAM, Philadelphia · Zbl 0696.49002 · doi:10.1137/1.9781611971309
[8] Gao, K.; Huang, Z-H, Tensor robust principal component analysis via tensor fibered rank and \(l_p\) minimization, SIAM J Imaging Sci, 16, 1, 423-460, 2023 · Zbl 07715434 · doi:10.1137/22M1473236
[9] Gao, K.; Huang, Z-H; Guo, L., Low-rank matrix recovery problem minimizing a new ratio of two norms approximating the rank function then using an admm-type solver with applications, J Comput Appl Math, 438, 2024 · Zbl 1534.94011 · doi:10.1016/j.cam.2023.115564
[10] Goldfarb, D.; Qin, Z., Robust low-rank tensor recovery: models and algorithms, SIAM J Matrix Anal Appl, 35, 1, 225-253, 2014 · Zbl 1296.65086 · doi:10.1137/130905010
[11] Golub, GH; Van Loan, CF, Matrix computations, 2013, Baltimore: The Johns Hopkins University Press, Baltimore · Zbl 1268.65037 · doi:10.56021/9781421407944
[12] Gu, S.; Xie, Q.; Meng, D.; Zuo, W.; Feng, X.; Zhang, L., Weighted nuclear norm minimization and its applications to low level vision, Int J Comput Vis, 121, 2, 183-208, 2017 · Zbl 1458.68231 · doi:10.1007/s11263-016-0930-5
[13] Hamilton, WR, Elements of quaternions, 1866, London: Longmans, Green & Company, London
[14] Huang, C.; Li, Z.; Liu, Y.; Wu, T.; Zeng, T., Quaternion-based weighted nuclear norm minimization for color image restoration, Pattern Recognit, 128, 2022 · doi:10.1016/j.patcog.2022.108665
[15] Jia, Z.; Ng, MK; Song, G-J, Robust quaternion matrix completion with applications to image inpainting, Numer Linear Algebra Appl, 26, 4, 2245, 2019 · Zbl 1474.65126 · doi:10.1002/nla.2245
[16] Jia, Z.; Ng, MK; Song, G-J, Lanczos method for large-scale quaternion singular value decomposition, Numer Algorithms, 82, 699-717, 2019 · Zbl 07107363 · doi:10.1007/s11075-018-0621-0
[17] Jia, Z.; Jin, Q.; Ng, MK; Zhao, X-L, Non-local robust quaternion matrix completion for large-scale color image and video inpainting, IEEE Trans Image Process, 31, 3868-3883, 2022 · doi:10.1109/TIP.2022.3176133
[18] Lan, R.; Zhou, Y., Quaternion-Michelson descriptor for color image classification, IEEE Trans Image Process, 25, 11, 5281-5292, 2016 · Zbl 1408.94337 · doi:10.1109/TIP.2016.2605922
[19] Lazzaro, D., A nonconvex approach to low-rank matrix completion using convex optimization, Numer Linear Algebra Appl, 23, 5, 801-824, 2016 · Zbl 1413.65172 · doi:10.1002/nla.2055
[20] Li, Y.; Wei, M.; Zhang, F.; Zhao, J., A fast structure-preserving method for computing the singular value decomposition of quaternion matrices, Appl Math Comput, 235, 157-167, 2014 · Zbl 1336.65057
[21] Miao, J.; Kou, KI, Color image recovery using low-rank quaternion matrix completion algorithm, IEEE Trans Image Process, 31, 190-201, 2021 · doi:10.1109/TIP.2021.3128321
[22] Miao, J.; Kou, KI; Liu, W., Low-rank quaternion tensor completion for recovering color videos and images, Pattern Recognit, 107, 2020 · doi:10.1016/j.patcog.2020.107505
[23] Oseledets, IV, Tensor-train decomposition, SIAM J Sci Comput, 33, 5, 2295-2317, 2011 · Zbl 1232.15018 · doi:10.1137/090752286
[24] Qin, Z.; Ming, Z.; Zhang, L., Singular value decomposition of third order quaternion tensors, Appl Math Lett, 123, 2022 · Zbl 1486.65040 · doi:10.1016/j.aml.2021.107597
[25] Recht, B.; Fazel, M.; Parrilo, PA, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Rev, 52, 3, 471-501, 2010 · Zbl 1198.90321 · doi:10.1137/070697835
[26] Rockafellar, RT; Wets, RJ-B, Variational analysis, 2009, Berlin: Springer, Berlin
[27] Ross, DA; Lim, J.; Lin, R-S; Yang, M-H, Incremental learning for robust visual tracking, Int J Comput Vis, 77, 125-141, 2008 · doi:10.1007/s11263-007-0075-7
[28] Sangwine S, Bihan NL (2024) Quaternion toolbox for matlab. http://qtfm.sourceforge.net/
[29] Subakan, ÖN; Vemuri, BC, A quaternion framework for color image smoothing and segmentation, Int J Comput Vis, 91, 3, 233-250, 2011 · Zbl 1235.68315 · doi:10.1007/s11263-010-0388-9
[30] Sun, Y.; Chen, S.; Yin, B., Color face recognition based on quaternion matrix representation, Pattern Recognit Lett, 32, 4, 597-605, 2011 · doi:10.1016/j.patrec.2010.11.004
[31] Wang, Z.; Bovik, AC; Sheikh, HR; Simoncelli, EP, Image quality assessment: from error visibility to structural similarity, IEEE Trans Image Process, 13, 4, 600-612, 2004 · doi:10.1109/TIP.2003.819861
[32] Wu, P.; Kou, KI; Miao, J., Efficient low-rank quaternion matrix completion under the learnable transforms for color image recovery, Appl Math Lett, 148, 2024 · Zbl 1526.94007 · doi:10.1016/j.aml.2023.108880
[33] Yin, Q.; Wang, J.; Luo, X.; Zhai, J.; Jha, SK; Shi, Y-Q, Quaternion convolutional neural network for color image classification and forensics, IEEE Access, 7, 20293-20301, 2019 · doi:10.1109/ACCESS.2019.2897000
[34] Zhang, F., Quaternions and matrices of quaternions, Linear Algebra Appl, 251, 21-57, 1997 · Zbl 0873.15008 · doi:10.1016/0024-3795(95)00543-9
[35] Zhang, M.; Huang, Z-H; Zhang, Y., Restricted \(p\)-isometry properties of nonconvex matrix recovery, IEEE Trans Inf Theory, 59, 7, 4316-4323, 2013 · Zbl 1364.94179 · doi:10.1109/TIT.2013.2250577
[36] Zhang Z, Ely G, Aeron S, Hao N, Kilmer M (2014) Novel methods for multilinear data completion and de-noising based on tensor-SVD. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3842-3849
[37] Zheng, M-M; Ni, G., Approximation strategy based on the t-product for third-order quaternion tensors with application to color video compression, Appl Math Lett, 140, 2023 · Zbl 1524.65098 · doi:10.1016/j.aml.2023.108587
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.