×

A viscous-term subcell limiting approach for high-order FR/CPR method in solving compressible Navier-Stokes equations on curvilinear grids. (English) Zbl 07899009

Summary: High-order flux reconstruction/correction procedure via reconstruction (FR/CPR) method has become an attractive method for simulating multi-scale flows because of its high accuracy and low dissipation. However, simulating flows with strong shocks is still challenging for FR/CPR. Recently, a priori subcell limiting based on compact nonlinear nonuniform weighted (CNNW) schemes was proposed for the CPR method to solve the Euler equations, which robustly simulates strong shocks and has a good balance between high resolution and shock-capturing robustness. The CPR method with subcell CNNW limiting is a hybrid scheme also called the hybrid CPR-CNNW scheme (abbr. HCCS). This paper extends HCCS to solve compressible Navier-Stokes equations on curvilinear grids. To improve the capability of HCCS in simulating hypersonic flows, a viscous-term subcell limiting (VSL) approach is proposed, which emphasizes the importance of introducing nonlinear mechanisms to the viscous term for capturing shocks. The main idea of the VSL is to replace the unified high-order polynomial distribution of physical variables or fluxes by a limited piecewise polynomial distribution for the viscous-term discretization in troubled cells. In this paper, the VSL is implemented by decomposing the troubled cells into subcells and limiting the distribution of physical variables for each subcell. To make the approach efficient, the VSL reuses the limited results used in the inviscid-term discretization. Moreover, HCCS with the VSL is extended to curvilinear grids. Discrete grid metrics and discrete Jacobian are designed to make HCCS with the VSL satisfy discrete conservation laws and discrete geometric conservation laws and fulfill free-stream preservation, which are validated by two test cases on curvilinear grids. It is shown that HCCS without the VSL blows up in simulating some viscous hypersonic flows. Numerical results on several typical cases show that HCCS with the VSL has obvious superiority in high resolution, shock-capturing robustness, and accurate prediction of surface pressure, skin friction, and heat transfer.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76Mxx Basic methods in fluid mechanics
35Lxx Hyperbolic equations and hyperbolic systems

Software:

Nektar++; FLEXI
Full Text: DOI

References:

[1] Jiang, G. S.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228, 1996 · Zbl 0877.65065
[2] Deng, X.; Zhang, H., Developing high-order weighted compact nonlinear schemes, J. Comput. Phys., 165, 22-44, 2000 · Zbl 0988.76060
[3] Shu, C.-W., High-order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD, Int. J. Comput. Fluid Dyn., 17, 107-118, 2003 · Zbl 1034.76044
[4] Deng, X. G.; Mao, M. L.; Tu, G. H.; Zhang, H. X.; Zhang, Y. F., High-order and high accurate CFD methods and their applications for complex grid problems, Commun. Comput. Phys., 11, 1081-1102, 2012 · Zbl 1373.76162
[5] Huynh, H. T.; Wang, Z. J.; Vincent, P. E., High-order methods for computational fluid dynamics: a brief review of compact differential formulations on unstructured grids, Comput. Fluids, 98, 209-220, 2014 · Zbl 1390.65123
[6] Wang, Z. J.; Li, Y.; Jia, F.; Laskowski, G. M.; Kopriva, J.; Paliath, U.; Bhaskaran, R., Towards industrial large eddy simulation using the FR/CPR method, Comput. Fluids, 156, 579-589, 2017 · Zbl 1390.76236
[7] Brouwne, O. M.; Housman, J. A.; Kenway, G. K.; Ghate, A. S.; Kiris, C. C., Numerical investigation of CL,max prediction on the NASA high-lift common research model, AIAA J., 61, 1639-1658, 2023
[8] Subramaniam, A.; Wong, M. L.; Lele, S. K., A high-order weighted compact high resolution scheme with boundary closures for compressible turbulent flows with shocks, J. Comput. Phys., 397, Article 108822 pp., 2019 · Zbl 1453.76142
[9] Yan, Z-G.; Pan, Y.; Castiglioni, G.; Hillewaert, K.; Peiro, J.; Moxey, D.; Sherwin, S. J., Nektar++: design and implementation of an implicit, spectral/hp element, compressible flow solver using a Jacobian-free Newton Krylov approach, Comput. Math. Appl., 81, 351-372, 2021 · Zbl 1456.76087
[10] Sun, D.; Guo, Q. L.; Yuan, X. X.; Zhang, H. Y.; Li, C.; Liu, P. X., A decomposition formula for the wall heat flux of a compressible boundary layer, Adv. Aerodyn., 3, 33, 2021
[11] Zhang, S.; Li, H.; Liu, X. L.; Zhang, H. X.; Shu, C.-W., Classification and sound generation of two-dimensional interaction of two Taylor vortices, Phys. Fluids, 25, Article 056103 pp., 2013
[12] Tu, G. H.; Chen, J. Q.; Yuan, X. X., Progress in flight tests of hypersonic boundary layer transition, Acta Mech. Sin., 37, 1589-1609, 2021
[13] Cockburn, B.; Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite elementmethod for scalar conservation laws III: one dimensional systems, J. Comput. Phys., 84, 90-113, 1989 · Zbl 0677.65093
[14] Cockburn, B.; Shu, C.-W., The Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws V: multidimensional systems, J. Comput. Phys., 141, 199-224, 1998 · Zbl 0920.65059
[15] Liu, Y.; Vinokur, M.; Wang, Z. J., Discontinuous spectral difference method for conservation laws on unstructured grids, J. Comput. Phys., 216, 780-801, 2006 · Zbl 1097.65089
[16] Wang, Z. J.; Liu, Y.; Jameson, A., Spectral difference method on unstructured grids II: extension to the Euler equations, J. Sci. Comput., 32, 45-71, 2007 · Zbl 1151.76543
[17] Karniadakis, G. E.; Sherwin, S. J., Spectral/hp Element Methods for Computational Fluid Dynamics, 2012, Oxford University Press
[18] Moura, R. C.; Sherwin, S. J.; Peiro, J., Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods, J. Comput. Phys., 298, 695-710, 2015 · Zbl 1349.76131
[19] Huynh, H. T., A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods, (AIAA 2007-4079, 2007)
[20] Wang, Z. J.; Gao, Haiyang, A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids, J. Comput. Phys., 228, 8161-8186, 2009 · Zbl 1173.65343
[21] Vincent, P. E.; Castonguay, P.; Jameson, A., A new class of high-order energy stable flux reconstruction schemes, J. Sci. Comput., 47, 50-72, 2011 · Zbl 1433.76094
[22] Wang, Z. J.; Fidkowski, K.; Abgrall, R.; Bassi, F., High-order CFD methods: current status and perspective, Int. J. Numer. Methods Fluids, 72, 811-845, 2013 · Zbl 1455.76007
[23] Zhong, X.; Shu, C.-W., A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods, J. Comput. Phys., 232, 1, 397-415, 2013
[24] Vilar, F. O., A posteriori correction of high-order discontinuous Galerkin scheme through subcell finite volume formulation and flux reconstruction, J. Comput. Phys., 387, 245-279, 2019 · Zbl 1452.65251
[25] Persson, P. O.; Peraire, J., Subcell shock capturing for discontinuous Galerkin methods, (Proceedings of the 44th AIAA Aerospace Science Meeting and Exhibit, 2006)
[26] Barter, G. E.; Darmofal, D. L., Shock capturing with PDE-based artificial viscosity for DGSEM: part I. Formulation, J. Comput. Phys., 229, 1810-1827, 2010 · Zbl 1329.76153
[27] Ching, E. J.; Lv, Y.; Barnhardt, M.; Ihme, M., Shock capturing for discontinuous Galerkin methods with application to predicting heat transfer in hypersonic flows, J. Comput. Phys., 376, 54-75, 2019 · Zbl 1416.76099
[28] Discacciati, N.; Hesthaven, J. S.; Ray, D., Controlling oscillations in high-order discontinuous Galerkin schemes using artificial viscosity tuned by neural networks, J. Comput. Phys., 409, Article 109304 pp., 2020 · Zbl 1435.65156
[29] Yu, J.; Hesthaven, J. S., A study of several artificial viscosity models within the discontinuous Galerkin framework, Commun. Comput. Phys., 27, 5, 1309-1343, 2020 · Zbl 1491.76046
[30] Feng, Y. W.; Liu, T. G., A characteristic-featured shock wave indicator on unstructured grids based on training an artificial neuron, J. Comput. Phys., 443, Article 110446 pp., 2020 · Zbl 07515404
[31] Qiu, J.; Shu, C.-W., Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one-dimensional case, J. Comput. Phys., 193, 115-135, 2004 · Zbl 1039.65068
[32] Balsara, D. S.; Meyer, C.; Dumbser, M., A sub-cell based indicator for troubled zones in RKDG schemes and a novel class of hybrid RKDG+HWENO schemes, J. Comput. Phys., 226, 586-620, 2007 · Zbl 1124.65072
[33] Zhu, J.; Qiu, J. X., Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method III: unstructured meshes, J. Sci. Comput., 39, 2, 293-321, 2009 · Zbl 1203.65156
[34] Zhu, J.; Zhong, X.; Shu, C.-W.; Qiu, J., Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes, J. Comput. Phys., 248, 2, 200-220, 2013 · Zbl 1349.65501
[35] Du, J.; Shu, C.-W.; Zhang, M. P., A simple weighted essentially non-oscillatory limiter for the correction procedure via reconstruction (CPR) framework, Appl. Numer. Math., 95, 173-198, 2015 · Zbl 1320.65114
[36] Park, J. S.; Kim, C., Hierarchical multi-dimensional limiting strategy for correction procedure via reconstruction, J. Comput. Phys., 308, 57-80, 2016 · Zbl 1351.76076
[37] Li, W.; Wandand, Q.; Ren, Y-X., A p-weighted limiter for the discontinuous Galerkin method on one-dimensional and two-dimensional triangular grids, J. Comput. Phys., 407, Article 109246 pp., 2020 · Zbl 07504715
[38] Dumbser, M.; Zanotti, O.; Loubere, R.; Diot, S., A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws, J. Comput. Phys., 278, 47-75, 2014 · Zbl 1349.65448
[39] Dumbser, M.; Loubere, R., A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes, J. Comput. Phys., 319, 163-199, 2016 · Zbl 1349.65447
[40] Boscheri, W.; Dumbser, M., Arbitrary-Lagrangian-Eulerian discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes, J. Comput. Phys., 346, 449-479, 2017 · Zbl 1378.76044
[41] Sonntag, M.; Munz, C. D., Efficient parallelization of a shock capturing for discontinuous Galerkin methods using finite volume sub-cells, J. Sci. Comput., 70, 3, 1262-1289, 2017 · Zbl 1366.65089
[42] Krais, N.; Beck, A.; Bolemann, T., FLEXI: a high order discontinuous Galerkin framework for hyperbolic-parabolic conservation laws, Comput. Math. Appl., 81, 186-219, 2021 · Zbl 1461.76347
[43] Hennemann, S.; Rueda-Ramírez, A. M.; Hindenlang, F. J.; Gassner, G. J., A provably entropy stable subcell shock capturing approach for high order split form DG for the compressible Euler equations, J. Comput. Phys., 426, Article 109935 pp., 2021 · Zbl 07510051
[44] Zhu, H. J.; Liu, H. Y.; Yan, Z.-G.; Shi, G. Q.; Deng, X. G., A priori subcell limiting based on compact nonuniform nonlinear weighted schemes of high-order CPR method for hyperbolic conservation laws, Comput. Fluids, 241, Article 105456 pp., 2022 · Zbl 1521.76307
[45] Rosa, J. N.; Munz, C. D., Hybrid DG/FV schemes for magnetohydrodynamics and relativistic hydrodynamics, Comput. Phys. Commun., 222, 113-135, 2018 · Zbl 07693039
[46] Potluri, V. D.; Puranik, B. P.; Bodi, Kowsik V. R., High order discontinuous Galerkin simulation of hypersonic shock-boundary layer interaction using subcell limiting approach, J. Comput. Phys., 485, Article 112117 pp., 2023 · Zbl 07690215
[47] var Leer, B., Towards the ultimate conservative difference scheme II, monotonicity and conservation combined in a second order scheme, J. Comput. Phys., 14, 361-370, 1974 · Zbl 0276.65055
[48] var Leer, B., Towards the ultimate conservative difference scheme V, a second order sequel to Godunov’s method, J. Comput. Phys., 32, 101-136, 1979 · Zbl 1364.65223
[49] Qiu, J.; Khoo, B.; Shu, C.-W., A numerical study for the performance of the Runge-Kutta discontinuous Galerkin method based on different numerical fluxes, J. Comput. Phys., 212, 540-565, 2006 · Zbl 1083.65093
[50] Kitamura, K.; Shima, E.; Nakamura, Y.; Roe, P. L., Evaluation of Euler fluxes for hypersonic heating computations, J. Comput. Phys., 48, 763-776, 2010
[51] Kitamura, K.; Shima, E., Towards shock-stable and accurate hypersonic heating computations: a new pressure flux for ausm-family schemes, J. Comput. Phys., 245, 62-83, 2013 · Zbl 1349.76487
[52] Zhu, H. J.; Deng, X. G.; Mao, M. L.; Liu, H. Y.; Tu, G. H., Osher flux with entropy fix for two-dimensional Euler equations, Adv. Appl. Math. Mech., 8, 4, 670-692, 2016 · Zbl 1488.65323
[53] Qu, F.; Sun, D.; Zhou, B.; Bai, J., Self-similar structures based genuinely two-dimensional Riemann solvers in curvilinear coordinates, J. Comput. Phys., 420, Article 109668 pp., 2020 · Zbl 07506614
[54] Bassi, F.; Rebay, S., A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131, 267-279, 1997 · Zbl 0871.76040
[55] Shi, G. Q.; Zhu, H. J.; Yan, Z.-G., A priori subcell limiting approach for the FR/CPR method on unstructured meshes, Commun. Comput. Phys., 31, 4, 1215-1241, 2022 · Zbl 1486.65016
[56] Deng, X.; Min, Y.; Mao, M.; Liu, H.; Tu, G.; Zhang, H., Further studies on geometric conservation law and applications to high-order finite difference schemes with stationary grids, J. Comput. Phys., 239, 90-111, 2013 · Zbl 1284.65101
[57] Zhu, H. J.; Yan, Z.-G.; Liu, H. Y.; Mao, M. L.; Deng, X. G., High-order hybrid WCNS-CPR schemes on hybrid meshes with curved edges for conservation law I: spatial accuracy and geometric conservation laws, Commun. Comput. Phys., 23, 5, 1355-1392, 2018 · Zbl 1488.65324
[58] Deng, X. G.; Zhu, H. J.; Min, Y. B.; Liu, H. Y.; Mao, M. L.; Wang, G. X., High-order finite difference schemes based on symmetric conservative metric method: decomposition, geometric meaning and connection with finite volume schemes, Adv. Appl. Math. Mech., 12, 436-479, 2020 · Zbl 1488.65233
[59] Mao, M. L.; Zhu, H. J.; Deng, X. G.; Min, Y. M.; Liu, H. Y., Effect of geometric conservation law on improving spatial accuracy for finite difference schemes on two-dimensional nonsmooth grids, Commun. Comput. Phys., 18, 673-706, 2015 · Zbl 1388.65062
[60] Deng, X.; Mao, M.; Tu, G.; Liu, H.; Zhang, H., Geometric conservation law and applications to high-order finite difference schemes with stationary grids, J. Comput. Phys., 230, 1100-1115, 2011 · Zbl 1210.65153
[61] Borges, R.; Carmona, M.; Costa, B.; Don, W. S., An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws, J. Comput. Phys., 227, 3191-3211, 2008 · Zbl 1136.65076
[62] Becker, R., Stosswelle und Detonation, Physik, 8, 321, 1923
[63] Zhou, G.; Xu, K.; Liu, F., Grid-converged solution and analysis of the unsteady viscous flow in a two-dimensional shock tube, Phys. Fluids, 30, Article 016102 pp., 2018
[64] Degrez, G.; Boccadoro, C. H.; Wendt, J. F., The interaction of an oblique shock with a laminar boundary layer revisited, J. Fluid Mech., 177, 247-263, 1987
[65] Xie, W. J.; Tian, Z. Y.; Zhang, Y.; Yu, H.; Ren, W. J., A unified construction of all-speed HLL-type schemes for hypersonic heating computations, Comput. Fluids, 177, 247-263, 2022
[66] Ma, Y. K.; Yan, Z.-G.; Zhu, H. J., Improvement of multistep weno scheme and its extension to higher orders of accuracy, Int. J. Numer. Methods Fluids, 82, 818-838, 2016
[67] Nishino, A.; Ishikawa, T.; Kitamura, K.; Nakamura, Y., Effect of the clearance between two bodies on TSTO aerodynamic heating, J. Jpn. Soc. Aeronaut. Space Sci., 53, 503-509, 2005
[68] Harten, A., High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49, 357-393, 1983 · Zbl 0565.65050
[69] Gnoffo, P.; White, J., Computational aerothermodynamic simulation issues on unstructured grids, (AIAA 2004-2371, 2004)
[70] Forsyth, P. A.; Jiang, H., Nonlinear iteration methods for high speed laminar compressible Navier-Stokes equations, Comput. Fluids, 26, 249-268, 1997 · Zbl 0884.76062
[71] Yang, L. M.; Shu, C.; Wang, Y.; Sun, Y., Development of discrete gas kinetic scheme for simulation of 3D viscous incompressible and compressible flows, J. Comput. Phys., 319, 129-144, 2016 · Zbl 1349.76750
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.