×

Lifting twisted coreflections against delta lenses. (English) Zbl 07898685

Delta lenses were introduced in 2011 in [https://link.springer.com/chapter/10.1007/978-3-642-24485-8_22] as a framework for bidirectional transformations [F. Abou-Saleh et al., Lect. Notes Comput. Sci. 9715, 1–28 (2018; Zbl 1476.68034)]. Johnson and Rosenbrugh [https://eceasst.org/index.php/eceasst/article/view/2090] initiated the study of delta lenses using category theory.
This paper considers a way of comparing delta lenses and split opfibrations: the class of functors that they lift against. These are the twisted coreflections and split coreflections, respectively.
The synopsis of the paper goes as follows.
§ 1
recalls the concepts required to state the definition of an algebraic weak factorization system (AWFS).
§ 2
recalls the notion of delta lense [https://link.springer.com/chapter/10.1007/978-3-642-24485-8_22; P. J. Freyd and G. M. Kelly, J. Pure Appl. Algebra 2, 169–191 (1972; Zbl 0257.18005)], constructing a thin double category \(\mathbb{L}\mathrm{ens}\)of categories, functors and delta lenses [https://bryceclarke.github.io/other/the-double-category-of-lenses.pdf]. It is shown (Theorem 2.6) that the double category of delta lenses is isomorphic to the double category \(\mathbb{R}\mathrm{LP}\left( \mathbb{J}\right) \)of right lifts for a small double category \(\mathbb{J}\). It is also shown that has tabulators, which is exploited to show that a delta lens is equivalent to a commutative diagram of functors \[ \begin{array} [c]{ccc} X & \overset{\varphi}{\longrightarrow} & A\\ & \underset{f\varphi}{\searrow} & \downarrow_{f}\\ & & B \end{array} \] where \(\varphi\)is bijective-on-objects and \(f\varphi\)is a discrete opfibration.
§ 3
introduces a special kind of split coreflection, called a twisted coreflection, constructing the double category \(\mathbb{T}\mathrm{wCoref}\)of categories, functors and twisted coreflections. It is shown (Theorem 3.19) that a split coreflection is a twisted coreflection iff it satisfies a certain pushout condition. It is also shown that a twisted coreflection is equivalent to a pushout square in \(\mathcal{C}\mathrm{at}\) \[ \begin{array} [c]{ccc} A_{0} & \overset{\iota_{A}}{\longrightarrow} & A\\ f^{\prime}\downarrow & & \downarrow f\\ X & \underset{\pi}{\longrightarrow} & B \end{array} \] where \(A_{0}\)is a discrete category , \(\iota_{A}\)is identity-on-objects, and \(f^{\prime}\)is an initial functor.
§ 4
establishes that twisted coreflections and delta lenses form an algebraic weak factorization system on \(\mathcal{C}\mathrm{at}\). The proof is divided into three steps.
(1)
The author describes a lifting operation on the following cospan of double functors \[ \mathbb{T}\mathrm{wCoref}\overset{U}{\mathrm{\longrightarrow}}\mathbb{S} \mathrm{q}\left( \mathcal{C}\mathrm{at}\right) \overset{V}{\longleftarrow }\mathbb{L}\mathrm{ens} \]
(2)
It is shown that each functor admits a factorization as a cofree twisted coreflection followed by a free delta lens.
(3)
It is shown that the induced double functors \begin{align*} \mathbb{T}\mathrm{wCoref} & \longrightarrow\mathbb{L}\mathrm{LP}\left( \mathbb{L}\mathrm{ens}\right) \\ \mathbb{L}\mathrm{ens} & \longrightarrow\mathbb{R}\mathrm{LP}\left( \mathbb{T}\mathrm{wCoref}\right) \end{align*} are invertible.
§ 5
outlines directions for future work.

MSC:

18A32 Factorization systems, substructures, quotient structures, congruences, amalgams
18A40 Adjoint functors (universal constructions, reflective subcategories, Kan extensions, etc.)
18C15 Monads (= standard construction, triple or triad), algebras for monads, homology and derived functors for monads
18D30 Fibered categories
18N10 2-categories, bicategories, double categories

References:

[1] Faris Abou-Saleh, James Cheney, Jeremy Gibbons, James McKinna, and Perdita Stevens. Introduction to bidirectional transformations. Lecture Notes in Computer Science, Vol. 9715 (2018). · Zbl 1476.68034 · doi:10.1007/978-3-319-79108-1_1
[2] Danel Ahman and Tarmo Uustalu. Taking updates seriously. CEUR Workshop Proceedings, Vol. 1827 (2017).
[3] Anthony Anjorin, Hsiang-Shang Ko, and Erhan Leblebici. C-lenses explained: Bx foundations for the rest of us. CEUR Workshop Proceedings, Vol. 2999 (2021).
[4] Francis Borceux, Federico Campanini, Marino Gran, and Walter Tholen. Groupoids and skeletal categories form a pretorsion theory in Cat. Advances in Mathematics, Vol. 426 (2023). · Zbl 1520.18008 · doi:10.1016/j.aim.2023.109110
[5] John Bourke. An orthogonal approach to algebraic weak factorisation systems. Journal of Pure and Applied Algebra, Vol. 227 (2023). · Zbl 1507.18003 · doi:10.1016/j.jpaa.2022.107294
[6] John Bourke and Richard Garner. Algebraic weak factorisation systems I: Accessible AWFS. Journal of Pure and Applied Algebra, Vol. 220 (2016). · Zbl 1327.18004 · doi:10.1016/j.jpaa.2015.06.002
[7] Dominique Bourn, Nelson Martins-Ferreira, Andrea Montoli, and Manuela Sobral. Schreier split epimorphisms between monoids. Semigroup Forum, Vol. 88 (2014). · Zbl 1306.20067 · doi:10.1007/s00233-014-9571-6
[8] C. Cassidy, M. Hébert, and G. M. Kelly. Reflective subcategories, localizations, and factorization systems. Journal of the Australian Mathematical Society, Vol. 38 (1985). · Zbl 0573.18002 · doi:10.1017/S1446788700023624
[9] James Cheney, Jeremy Gibbons, James McKinna, and Perdita Stevens. On principles of least change and least surprise for bidirectional transformations. Journal of Object Technology, Vol. 16 (2017). · doi:10.5381/jot.2017.16.1.a3
[10] Emma Chollet, Bryce Clarke, Michael Johnson, Maurine Songa, Vincent Wang, and Gioele Zardini. Limits and colimits in a category of lenses. Electronic Proceedings in Theoretical Computer Science, Vol. 372 (2022). · Zbl 1530.18002 · doi:10.4204/EPTCS.372.12
[11] Bryce Clarke. Internal lenses as functors and cofunctors. Electronic Proceedings in Theoretical Computer Science, Vol. 323 (2020). · Zbl 1522.18001 · doi:10.4204/EPTCS.323.13
[12] Bryce Clarke. Internal split opfibrations and cofunctors. Theory and Applications of Categories, Vol. 35 (2020). · Zbl 1456.18008
[13] Bryce Clarke. Delta lenses as coalgebras for a comonad. CEUR Workshop Proceedings, Vol. 2999 (2021).
[14] Bryce Clarke. The double category of lenses. PhD thesis, Macquarie University (2022). · doi:10.25949/22045073.v1
[15] Bryce Clarke. The algebraic weak factorisation system for delta lenses. Electronic Proceedings in Theoretical Computer Science, Vol. 397 (2023). · doi:10.4204/EPTCS.397.4
[16] Matthew Di Meglio. Coequalisers under the lens. Electronic Proceedings in Theoretical Computer Science, Vol. 372 (2022). · Zbl 1530.18004 · doi:10.4204/EPTCS.372.11
[17] Matthew Di Meglio. Universal properties of lens proxy pullbacks. Electronic Proceed-ings in Theoretical Computer Science, Vol. 380 (2023). · Zbl 07813641 · doi:10.4204/EPTCS.380.23
[18] Zinovy Diskin, Yingfei Xiong, and Krzysztof Czarnecki. From state-to delta-based bidirectional model transformations: The asymmetric case. Journal of Object Tech-nology, Vol. 10 (2011). · doi:10.5381/jot.2011.10.1.a6
[19] Eduardo Dubuc. Adjoint triangles. Lecture Notes in Mathematics, Vol. 61 (1968). · Zbl 0172.02103 · doi:10.1007/BFb0077118
[20] P. J. Freyd and G. M. Kelly. Categories of continuous functors I. Journal of Pure and Applied Algebra, Vol. 2 (1972). · Zbl 0257.18005 · doi:10.1016/0022-4049(72)90001-1
[21] Richard Garner. Understanding the small object argument. Applied Categorical Structures, Vol. 17 (2009). · Zbl 1173.55009 · doi:10.1007/s10485-008-9137-4
[22] Marco Grandis and Robert Paré. Limits in double categories. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Vol. 40 (1999). · Zbl 0939.18007
[23] Marco Grandis and Robert Paré. Adjoint for double categories. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Vol. 45 (2004). · Zbl 1063.18002
[24] Marco Grandis and Walter Tholen. Natural weak factorization systems. Archivum mathematicum, Vol. 42 (2006). · Zbl 1164.18300
[25] Michael Johnson, Robert Rosebrugh, and R. J. Wood. Lenses, fibrations and universal translations. Mathematical Structures in Computer Science, Vol. 22 (2012). · Zbl 1237.68075 · doi:10.1017/S0960129511000442
[26] Michael Johnson and Robert Rosebrugh. Delta lenses and opfibrations. Electronic Communications of the EASST, Vol. 57 (2013). · doi:10.14279/tuj.eceasst.57.875
[27] Michael Johnson and Robert Rosebrugh. Unifying set-based, delta-based and edit-based lenses. CEUR Workshop Proceedings, Vol. 1571 (2016).
[28] G. M. Kelly. Basic concepts of enriched category theory. Reprints in Theory and Applications of Categories, No. 10 (2005). · Zbl 1086.18001
[29] Stephen Lack and Pawe l Sobociński. Adhesive categories. Lecture Notes in Computer Science, Vol. 2987 (2004). · doi:10.1007/978-3-540-24727-2_20
[30] F. E. J. Linton. Autonomous categories and duality of functors. Journal of Algebra, Vol. 2 (1965). · Zbl 0166.27503 · doi:10.1016/0021-8693(65)90013-X
[31] Nelson Martins-Ferreira, Andrea Montoli, and Manuela Sobral. Semidirect products and crossed modules in monoids with operations. Journal of Pure and Applied Algebra, Vol. 217 (2013). · Zbl 1277.18016 · doi:10.1016/j.jpaa.2012.06.022
[32] Susan Niefield. Span, cospan, and other double categories. Theory and Applications of Categories, Vol. 26 (2012). · Zbl 1275.18014
[33] Emily Riehl. Algebraic model structures. New York Journal of Mathematics, Vol. 17 (2011). · Zbl 1222.55016
[34] Ross Street and R. F. C. Walters. The comprehensive factorization of a functor. Bulletin of the American Mathematical Society, Vol. 79 (1973). · Zbl 0274.18001 · doi:10.1090/S0002-9904-1973-13268-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.