×

Smooth subsonic and transonic spiral flows with nonzero vorticity to steady Euler-Poisson system in concentric cylinders. (English) Zbl 07897517

Summary: Both smooth subsonic and transonic spiral flows to steady Euler-Poisson system with nonzero angular velocity and vorticity in a concentric cylinder are studied. On the one hand, we investigate the structural stability of smooth cylindrically symmetric subsonic flows under three-dimensional perturbations on the inner and outer cylinders. On the other hand, the structural stability of smooth transonic flows under the axi-symmetric perturbations is examined. There are no any restrictions on the background subsonic and transonic solutions. A deformation-curl-Poisson decomposition to the steady Euler-Poisson system is utilized to deal with the hyperbolic-elliptic mixed structure in the subsonic region. We emphasize that there is a special structure of the steady Euler-Poisson system which yields a priori estimates and uniqueness of the linearized elliptic system.

MSC:

35Q35 PDEs in connection with fluid mechanics
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
76N15 Gas dynamics (general theory)
76W05 Magnetohydrodynamics and electrohydrodynamics
76G25 General aerodynamics and subsonic flows
76H05 Transonic flows
35L65 Hyperbolic conservation laws
35M10 PDEs of mixed type
35B65 Smoothness and regularity of solutions to PDEs
35B06 Symmetries, invariants, etc. in context of PDEs
35B07 Axially symmetric solutions to PDEs
35B20 Perturbations in context of PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness

References:

[1] Agmon, S.; Douglis, A.; Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, Commun. Pure Appl. Math., 17, 35-92, 1964 · Zbl 0123.28706 · doi:10.1002/cpa.3160170104
[2] Amrouche, C.; Bernardi, C.; Dauge, M.; Girault, V., Vector potentials in three dimensional nonsmooth domains, Math. Methods Appl. Sci., 21, 823-864, 1998 · Zbl 0914.35094 · doi:10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B
[3] Arthur Cheng, CH; Shkoller, Steve, Solvability and regularity for an elliptic system prescribing the curl, divergence, and partial trace of a vector field on Sobolev-class domains, J. Math. Fluid Mech., 19, 375-422, 2017 · Zbl 1384.35025 · doi:10.1007/s00021-016-0289-y
[4] Bae, M.; Park, Y., Radial transonic shock solutions of Euler-Poisson system in convergent nozzles, Discrete Contin. Dyn. Syst. Ser. S, 11, 5, 773-791, 2018 · Zbl 1499.76062
[5] Bae, M.; Park, Y., Three-dimensional supersonic flows of Euler-Poisson system for potential flow, Commun. Pure Appl. Anal., 20, 7-8, 2421-2440, 2021 · Zbl 1504.35286 · doi:10.3934/cpaa.2021079
[6] Bae, M.; Weng, S., 3-D axisymmetric subsonic flows with nonzero swirl for the compressible Euler-Poisson system, Ann. Inst. Henri Poincaré, Anal. Non Linéatre, 35, 1, 161-186, 2018 · Zbl 1384.35022 · doi:10.1016/j.anihpc.2017.03.004
[7] Bae, M.; Duan, B.; Xie, C., Subsonic solutions for steady Euler-Poisson system in two-dimensional nozzles, SIAM J. Math. Anal., 46, 3455-3480, 2014 · Zbl 1316.35221 · doi:10.1137/13094222X
[8] Bae, M.; Duan, B.; Xie, C., Two-dimensional subsonic flows with self-gravitation in bounded domain, Math. Models Methods Appl. Sci., 25, 14, 2721-2747, 2015 · Zbl 1329.35235 · doi:10.1142/S0218202515500591
[9] Bae, M.; Duan, B.; Xie, C., Subsonic flow for multidimensional Euler-Poisson system, Arch. Ration. Mech. Anal., 220, 155-191, 2016 · Zbl 1339.35222 · doi:10.1007/s00205-015-0930-6
[10] Bae, M.; Duan, B.; Xie, C., Structural stability of supersonic solutions to the Euler-Poisson system, Arch. Ration. Mech. Anal., 239, 679-731, 2021 · Zbl 1456.35136 · doi:10.1007/s00205-020-01583-7
[11] Chen, L.; Mei, M.; Zhang, G., Radially symmetric spiral flows of the compressible Euler-Poisson system for semiconductors, J. Diff. Equ., 373, 359-388, 2023 · Zbl 1527.35419 · doi:10.1016/j.jde.2023.06.017
[12] Han, Q., Lin, F.: Elliptic Partial Differential Equations. Courant Institute of Math. Sci., NYU (1997) · Zbl 1052.35505
[13] Kozono, H.; Yanagisawa, T., \(L^r\)-variational inequality for vector fields and the Helmholtz-Weyl decomposition in bounded domains, Indiana Univ. Math. J., 58, 4, 1853-1920, 2009 · Zbl 1179.35147 · doi:10.1512/iumj.2009.58.3605
[14] Li, J.; Mei, M.; Zhang, G.; Zhang, K., Steady hydrodynamic model of semiconductors with sonic boundary: (I) Subsonic doping progile, SIAM J. Math. Anal., 49, 6, 4767-4811, 2017 · Zbl 1379.35350 · doi:10.1137/17M1127235
[15] Li, J.; Mei, M.; Zhang, G.; Zhang, K., Steady hydrodynamic model of semiconductors with sonic boundary: (II) Supersonic doping progile, SIAM J. Math. Anal., 50, 1, 718-734, 2018 · Zbl 1380.35168 · doi:10.1137/17M1129477
[16] Luo, T.; Xin, Z., Transonic shock solutions for a system of Euler-Poisson equations, Comm. Math. Sci., 10, 419-462, 2012 · Zbl 1286.35165 · doi:10.4310/CMS.2012.v10.n2.a1
[17] Wang, C.; Xin, Z., Smooth transonic flows of Meyer type in de Laval nozzles, Arch. Ration. Mech. Anal., 232, 3, 1597-1647, 2019 · Zbl 1414.35176 · doi:10.1007/s00205-018-01350-9
[18] Wang, C.; Xin, Z., Regular Subsonic-sonic flows in general nozzles, Adv. Math., 380, 107578, 56, 2021 · Zbl 1458.35321
[19] Weng, S., Xin, Z.: Existence and stability of the cylindrical transonic shock solutions under three dimensional perturbations. arXiv:2304.02429 (2023)
[20] Weng, S., On sready subsonic flows for the Euler-Poisson models, SIAM J. Math. Anal., 46, 1, 757-779, 2014 · Zbl 1314.35112 · doi:10.1137/120902483
[21] Weng, S., A deformation-curl-Poisson decomposition to the three dimensional steady Euler-Poisson system with applications, J. Diff. Equ., 267, 11, 6574-6603, 2019 · Zbl 1425.35038 · doi:10.1016/j.jde.2019.07.002
[22] Weng, S.; Xin, Z., A deformation-curl decomposition for three dimensional steady Euler equations (in Chinese), Sci. Sin. Math., 49, 307-320, 2019 · Zbl 1499.35490 · doi:10.1360/N012018-00125
[23] Weng, S.; Xin, Z., Smooth transonic flows with nonzero vorticity to a quasi two dimensional steady euler flow model, Arch. Rational Mech. Anal., 248, 49, 2024 · Zbl 07855936 · doi:10.1007/s00205-024-02000-z
[24] Weng, S.; Xin, Z.; Yuan, H., Steady compressible radially symmetric flows with nonzero angular velocity in an annulus, J. Diff. Equ., 286, 433-454, 2021 · Zbl 1462.76124 · doi:10.1016/j.jde.2021.03.028
[25] Weng, S.; Xin, Z.; Yuan, H., On some smooth symmetric transonic flows with nonzero angular velocity and vorticity, Math. Models Methods Appl. Sci., 31, 13, 2773-2817, 2021 · Zbl 1490.76122 · doi:10.1142/S0218202521500615
[26] Xie, C.; Xin, Z.; Luo, T.; Rauch, J., Stability of transonic shock solutions for Euler-Poisson equations, Arch. Ration. Mech. Anal., 202, 787-827, 2011 · Zbl 1261.76055 · doi:10.1007/s00205-011-0433-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.