×

Exploring solutions to specific class of fractional differential equations of order \(3<\hat{u}\leq 4\). (English) Zbl 07896997

Summary: This paper focuses on exploring the existence of solutions for a specific class of FDEs by leveraging fixed point theorem. The equation in question features the Caputo fractional derivative of order \(3<\hat{u} \leq 4\) and includes a term \(\Theta (\beta,\mathscr{Z}(\beta))\) alongside boundary conditions. Through the application of a fixed point theorem in appropriate function spaces, we consider nonlocal conditions along with necessary assumptions under which solutions to the given FDE exist. Furthermore, we offer an example to illustrate the results.

MSC:

34A08 Fractional ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
47H10 Fixed-point theorems

References:

[1] Podlubny, I.: Fractional differential equations, mathematics in science and engineering (1999) · Zbl 0924.34008
[2] Le Mehaute, A.; Crepy, G., Introduction to transfer and motion in fractal media: the geometry of kinetics, Solid State Ion., 9, 17-30, 1983
[3] Faieghi, M.; Kuntanapreeda, S.; Delavari, H.; Baleanu, D., LMI-based stabilization of a class of fractional-order chaotic systems, Nonlinear Dyn., 72, 301-309, 2013 · Zbl 1268.93121 · doi:10.1007/s11071-012-0714-6
[4] Sokolov, I. M.; Klafter, J.; Blumen, A., Fractional kinetics, Phys. Today, 55, 11, 48-54, 2002 · doi:10.1063/1.1535007
[5] Kilbas, A. A.; Marichev, O. I.; Samko, S. G., Fractional Integrals and Derivatives (Theory and Applications), 1993 · Zbl 0818.26003
[6] Kilbas, A.: Theory and applications of fractional differential equations · Zbl 1210.35276
[7] Zhong, W.; Lin, W., Nonlocal and multiple-point boundary value problem for fractional differential equations, Comput. Math. Appl., 59, 3, 1345-1351, 2010 · Zbl 1189.34036 · doi:10.1016/j.camwa.2009.06.032
[8] Ahmad, B.; Nieto, J. J., Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions, Bound. Value Probl., 2011, 2011 · Zbl 1275.45004 · doi:10.1186/1687-2770-2011-36
[9] Graef, J. R.; Kong, L.; Kong, Q., Application of the mixed monotone operator method to fractional boundary value problems, Fract. Differ. Calc., 2, 554-567, 2011
[10] Zhou, W.-X.; Chu, Y.-D.; Băleanu, D., Uniqueness and existence of positive solutions for a multi-point boundary value problem of singular fractional differential equations, Adv. Differ. Equ., 2013, 2013 · Zbl 1380.34024 · doi:10.1186/1687-1847-2013-114
[11] Aljurbua, Saleh Fahad, Extended existence results for FDEs with nonlocal conditions, AIMS Math., 9, 4, 9049-9058, 2024 · doi:10.3934/math.2024440
[12] Aljurbua, Saleh Fahad, Extended existence results of solutions for FDEs of order \(1<\gamma \leq 2\), AIMS Math., 9, 5, 13077-13086, 2024 · doi:10.3934/math.2024638
[13] Ahmad, B., Nieto, J.J.: Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory (2010) · Zbl 1245.34008
[14] Agarwal, R. P.; Ahmad, B., Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions, Comput. Math. Appl., 62, 3, 1200-1214, 2011 · Zbl 1228.34009 · doi:10.1016/j.camwa.2011.03.001
[15] Ahmad, B., Existence of solutions for fractional differential equations of order q in (2, 3 with anti-periodic boundary conditions, J. Appl. Math. Comput., 34, 385-391, 2010 · Zbl 1216.34003 · doi:10.1007/s12190-009-0328-4
[16] Agarwal, R. P.; Ahmad, B.; Nieto, J. J., Fractional differential equations with nonlocal (parametric type) anti-periodic boundary conditions, Filomat, 31, 5, 1207-1214, 2017 · Zbl 1488.34012 · doi:10.2298/FIL1705207A
[17] Lakshmikantham, V., Theory of fractional functional differential equations, Nonlinear Anal., Theory Methods Appl., 69, 10, 3337-3343, 2008 · Zbl 1162.34344 · doi:10.1016/j.na.2007.09.025
[18] Lim, S.; Li, M.; Teo, L., Langevin equation with two fractional orders, Phys. Lett. A, 372, 42, 6309-6320, 2008 · Zbl 1225.82049 · doi:10.1016/j.physleta.2008.08.045
[19] Smart, D. R., Fixed Point Theorems, 1980 · Zbl 0427.47036
[20] Rida, S.; El-Sherbiny, H.; Arafa, A., On the solution of the fractional nonlinear Schrödinger equation, Phys. Lett. A, 372, 5, 553-558, 2008 · Zbl 1217.81068 · doi:10.1016/j.physleta.2007.06.071
[21] Diethelm, K.; Ford, N. J., Analysis of fractional differential equations, J. Math. Anal. Appl., 265, 2, 229-248, 2002 · Zbl 1014.34003 · doi:10.1006/jmaa.2000.7194
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.