×

On the reconstruction of the absorption coefficient for the 2D acoustic system. (English) Zbl 07896839

Summary: We consider the coefficient inverse problem for the 2D system of acoustics. Our goal is to recover the coefficient of acoustic attenuation by using the additional information of the wave-field in the number of receivers. We obtain the gradient of the cost functional and implement the numerical algorithm for solving the inverse problem, based on a optimization approach. We provide the numerical results of recovering the absorption coefficient and study its influence on the efficiency of reconstructing other parameters of the system. By taking into account the absorption of the sounding wave we aim to bring the mathematical model closer to the applications, related to the ultrasound tomography of the human tissue.

MSC:

35R30 Inverse problems for PDEs
35L50 Initial-boundary value problems for first-order hyperbolic systems
49M41 PDE constrained optimization (numerical aspects)
49N45 Inverse problems in optimal control
65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs

References:

[1] S.K. Godunov, A.V. Zabrodin, M.Y. Ivanov, A.N. Kraiko, G.P. Prokopov, Numerical solution of multidimensional problems of gas dynamics, Nauka, M., 1976
[2] B. van Leer, “On the relation between the upwind-differencing schemes of Godunov, Engquist-Osher and Roe”, SIAM J. Sci. Stat. Comput., 5 (1984), 1-20 · Zbl 0547.65065 · doi:10.1137/0905001
[3] V.G. Romanov, S.I. Kabanikhin, Inverse problems for Maxwell’s equations, VSP, Utrecht, 1994 · Zbl 0853.35001
[4] S. He, S.I. Kabanikhin, “An optimization approach to a three-dimensional acoustic inverse problem in the time domain”, J. Math. Phys., 36:8 (1995), 4028-4043 · Zbl 0842.76076 · doi:10.1063/1.530945
[5] S.I. Kabanikhin, O. Scherzer, M.A. Shishlenin, “Iteration methods for solving a two dimensional inverse problem for a hyperbolic equation”, J. Inverse Ill-Posed Probl., 11:1 (2003), 87-109 · Zbl 1028.35166 · doi:10.1515/156939403322004955
[6] O.Y. Imanuvilov, V. Isakov, M. Yamamoto, “An inverse problem for the dynamical Lamé system with two sets of boundary data”, Commun. Pure Appl. Math., 56:9 (2003), 1366-1382 · Zbl 1044.35105 · doi:10.1002/cpa.10097
[7] V.G. Romanov, D.I. Glushkova, “The problem of determining two coefficients of a hyperbolic equation”, Dokl. Math., 67:3 (2003), 386-390 · Zbl 1247.35205
[8] D.I. Glushkova, V.G. Romanov, “A stability estimate for a solution to the problem of determination of two coefficients of a hyperbolic equation”, Sib. Math. J., 44:2 (2003), 250-259 · Zbl 1050.35138 · doi:10.1023/A:1022928719602
[9] S. Li, “An inverse problem for Maxwell”s equations in bi-isotropic media”, SIAM J. Math. Anal., 37:4 (2005), 1027-1043 · Zbl 1100.35121 · doi:10.1137/S003614100444366X
[10] S. Li, M. Yamamoto, “An inverse source problem for Maxwell”s equations in anisotropic media”, Appl. Anal., 84:10 (2005), 1051-1067 · Zbl 1081.35144 · doi:10.1080/00036810500047725
[11] A.M. Blokhin, Y.L. Trakhinin, Well-posedness of linear hyperbolic problems: theory and applications, Nova Science Publishers, New York, 2006 · Zbl 1234.35003
[12] S. Li, M. Yamamoto, “An inverse problem for Maxwell”s equations in anisotropic media”, Chin. Ann. Math., Ser B, 28:1 (2007), 35-54 · Zbl 1121.35141 · doi:10.1007/s11401-005-0572-3
[13] M. Bellassoued, D. Jellali, M. Yamamoto, “Lipschitz stability in in an inverse problem for a hyperbolic equation with a finite set of boundary data”, Appl. Anal., 87:10-11 (2008), 1105-1119 · Zbl 1151.35395 · doi:10.1080/00036810802369231
[14] S.I. Kabanikhin, M.A. Shishlenin, “Quasi-solution in inverse coefficient problems”, J. Inverse Ill-Posed Probl., 16:7 (2008), 705-713 · Zbl 1156.35485 · doi:10.1515/JIIP.2008.043
[15] L. Beilina, M.V. Klibanov, “Synthesis of global convergence and adaptivity for a hyperbolic coefficient inverse problem in 3D”, J. Inverse Ill-Posed Probl., 18:1 (2010), 85-132 · Zbl 1279.65116 · doi:10.1515/jiip.2010.003
[16] J. Xin, L. Beilina, M. Klibanov, “Globally convergent numerical methods for some coefficient inverse problems”, Comput. Sci. Eng., 12:5 (2010), 64-77
[17] L. Beilina, “Adaptive finite element method for a coefficient inverse problem for Maxwell”s system”, Appl. Anal., 90:9-10 (2011), 1461-1479 · Zbl 1223.78010 · doi:10.1080/00036811.2010.502116
[18] N. Duric, P. Littrup, C. Li, O. Roy, S. Schmidt, R. Janer, X. Cheng, J. Goll, O. Rama, L. Bey-Knight, W. Greenway, “Breast ultrasound tomography: Bridging the gap to clinical practice”, Proc. SPIE, 8320, 2012, 832000
[19] R. Jirík, I. Peterlik, N. Ruiter, J. Fousek, R. Dapp, M. Zapf, J. Jan, “Sound-speed image reconstruction in sparse-aperture 3D ultrasound transmission tomography”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 59:2 (2012), 254-264 · doi:10.1109/TUFFC.2012.2185
[20] M.V. Klibanov, “Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems”, J. Inverse Ill-Posed Probl., 21:4 (2013), 477-560 · Zbl 1273.35005 · doi:10.1515/jip-2012-0072
[21] S.I.Kabanikhin, D.B. Nurseitov, M.A. Shishlenin, B.B. Sholpanbaev, “Inverse problems for the ground penetrating radar”, J. Inverse Ill-Posed Probl., 21:6 (2013), 885-892 · Zbl 1278.65145 · doi:10.1515/jip-2013-0057
[22] V.A. Burov, D.I. Zotov, O.D. Rumyantseva, “Reconstruction of the sound velocity and absorption spatial distributions in soft biological tissue phantoms from experimental ultrasound tomography data”, Acoust. Phys., 61:2 (2015), 231-248 · doi:10.1134/S1063771015020013
[23] L. Beilina, M. Cristofol, K. Niinimäki, “Optimization approach for the simultaneous reconstruction of the dielectric permittivity and magnetic permeability functions from limited observations”, Inverse Probl. Imaging, 9:1 (2015), 1-25 · Zbl 1308.35296 · doi:10.3934/ipi.2015.9.1
[24] L. Beilina, S. Hosseinzadegan, “An adaptive finite element method in reconstruction of coefficients in Maxwell”s equations from limited observations”, Appl. Math., Praha, 51:3 (2016), 253-286 · Zbl 1413.65363 · doi:10.1007/s10492-016-0131-0
[25] L. Beilina, M. Cristofol, S. Li, M. Yamamoto, “Lipschitz stability for an inverse hyperbolic problem of determining two coefficients by a finite number of observations”, Inverse Probl., 34:1 (2017), 015001 · Zbl 1474.35689 · doi:10.1088/1361-6420/aa941d
[26] J. Seydel, Th. Schuster, “Identifying the stored energy of a hyperelastic structure by using an attenuated Landweber method”, Inverse Probl., 33:12 (2017), 124004 · Zbl 1394.74047 · doi:10.1088/1361-6420/aa8d91
[27] J. Wiskin, B. Malik, R. Natesan, M. Lenox, “Quantitative assessment of breast density using transmission ultrasound tomography”, Med. Phys., 46:6 (2019), 2610-2620 · doi:10.1002/mp.13503
[28] M.V. Klibanov, “Travel time tomography with formally determined incomplete data in 3D”, Inverse Probl. Imaging, 13:6 (2019), 1367-1393 · Zbl 1427.35362 · doi:10.3934/ipi.2019060
[29] M.V. Klibanov, “On the travel time tomography problem in 3D”, J. Inverse Ill-Posed Probl., 27:4 (2019), 591-607 · Zbl 1418.35375 · doi:10.1515/jiip-2019-0036
[30] S.I. Kabanikhin, D.V. Klyuchinskiy, N.S. Novikov, M.A. Shishlenin, “Numerics of acoustical 2D tomography based on the conservation laws”, J. Inverse Ill-Posed Probl., 28:2 (2020), 287-297 · Zbl 1433.65196 · doi:10.1515/jiip-2019-0061
[31] D. Klyuchinskiy, N. Novikov, M. Shishlenin, “A modification of gradient descent method for solving coefficient inverse problem for acoustics equations”, Computation, 8:3 (2020), 73 · doi:10.3390/computation8030073
[32] S.I. Kabanikhin, K.K. Sabelfeld, N.S. Novikov, M.A. Shishlenin, “Numerical solution of an inverse problem of coefficient recovering for a wave equation by a stochastic projection methods”, Monte Carlo Methods Appl., 21:3 (2015), 189-203 · Zbl 1323.65103 · doi:10.1515/mcma-2015-0103
[33] P. Stefanov, G. Uhlmann, A. Vasy, “Local recovery of the compressional and shear speeds from the hyperbolic DN map”, Inverse Probl., 34:1 (2018), 014003 · Zbl 1516.35537 · doi:10.1088/1361-6420/aa9833
[34] V. Filatova, A. Danilin, V. Nosikova, L. Pestov, “Supercomputer Simulations of the Medical Ultrasound Tomography Problem”, Parallel Computational Technologies, PCT 2019, Commun. Comput. Inf. Sci., 1063, eds. Sokolinsky L., Zymbler M., Springer, Cham, 2019, 297-308
[35] V. Filatova, L. Pestov, A. Poddubskaya, “Detection of velocity and attenuation inclusions in the medical ultrasound tomography”, J. Inverse Ill-Posed Probl., 29:3 (2021), 459-466 · Zbl 1478.65076 · doi:10.1515/jiip-2020-0122
[36] I.M. Kulikov, N.S. Novikov, M.A. Shishlenin, “Mathematical modeling of ultrasonic wave propagation in a two-dimensional medium: direct and inverse problem”, Proceedings of Conferences, 12, Proceedings of the VI International scientific school-conference for young scientists «Theory and numerical methods for solving inverse and ill-posed problem», (2015), C219-C228
[37] R. Klein, Th. Schuster, A. Wald, “Sequential subspace optimization for recovering stored energy functions in hyperelastic materials from time-dependent data”, Time-dependent problems in imaging and parameter identification, eds. Kaltenbacher Barbara et al., Springer, Cham, 2021, 165-190 · Zbl 1487.65139 · doi:10.1007/978-3-030-57784-1_6
[38] D.V. Klyuchinskiy, N.S. Novikov, M.A. Shishlenin, “CPU-time and RAM memory optimization for solving dynamic inverse problems using gradient-based approach”, J. Comput. Phys., 439 (2021), 110374 · Zbl 1537.65120 · doi:10.1016/j.jcp.2021.110374
[39] M. Shishlenin, N. Savchenko, N. Novikov, D. Klyuchinskiy, “Modeling of 2D acoustic radiation patterns as a control problem”, Mathematics, 10:7 (2022), 1116 · doi:10.3390/math10071116
[40] D. Klyuchinskiy, N. Novikov, M. Shishlenin, “Recovering density and speed of Sound coefficients in the 2D hyperbolic system of acoustic equations of the first order by a finite number of observations”, Mathematics, 9:2 (2021), 199 · doi:10.3390/math9020199
[41] Xinhua Guo, Yuanhuai Zhang, Jiabao An, Qing Zhang, Ranxu Wang, Xiantao Yu, “Experimental investigation on characteristics of graphene acoustic transducers driven by electrostatic and electromagnetic forces”, Ultrasonics, 127 (2023), 106857 · doi:10.1016/j.ultras.2022.106857
[42] F. Lucka, M. Pérez-Liva, B.E. Treeby, B.T. Cox, “High resolution 3D ultrasonic breast imaging by time-domain full waveform inversion”, Inverse Probl., 38:2 (2022), 025008 · Zbl 07455597 · doi:10.1088/1361-6420/ac3b64
[43] S. Bernard, V. Monteiller, D. Komatitsch, P. Lasaygues, “Ultrasonic computed tomography based on full-waveform inversion for bone quantitative imaging”, Phys. Med. Biol., 62:17 (2017), 7011-7035 · doi:10.1088/1361-6560/aa7e5a
[44] S. Li, M. Yamamoto, “An inverse problem for Maxwell”s equations in isotropic and non-stationary media”, Appl. Anal., 92:11 (2013), 2335-2356 · Zbl 1284.35463 · doi:10.1080/00036811.2012.738359
[45] M. Birk, R. Dapp, N.V. Ruiter, J. Becker, “GPU-based iterative transmission reconstruction in 3D ultrasound computer tomography”, J. Parallel Distrib. Comput., 74:1 (2014), 1730-1743 · doi:10.1016/j.jpdc.2013.09.007
[46] H. Gemmeke, T. Hopp, M. Zapf, C. Kaise, N.V. Ruiter, “3D ultrasound computer tomography: Hardware setup, reconstruction methods and first clinical results”, Nucl. Instrum. Methods Phys. Res. A, 873 (2017), 59-65 · doi:10.1016/j.nima.2017.07.019
[47] R. Guo, G. Lu, B. Qin, B. Fei, “Ultrasound imaging technologies for breast cancer detection and management: A review”, Ultrasound Med. Biol., 44:1 (2018), 37-70 · doi:10.1016/j.ultrasmedbio.2017.09.012
[48] P. Huthwaite, F. Simonetti, “High-resolution imaging without iteration: a fast and robust method for breast ultrasound tomography”, J. Acoust. Soc. Am., 130:3 (2011), 1721-1734 · doi:10.1121/1.3613936
[49] S. Li, M. Jackowski, D.P. Dione, T. Varslot, L.H. Staib, K. Mueller, “Refraction corrected transmission ultrasound computed tomography for application in breast imaging”, Med. Phys., 37:5 (2010), 2233-2246 · doi:10.1118/1.3360180
[50] B. Malik, R. Terry, J. Wiskin, M. Lenox, “Quantitative transmission ultrasound tomography: Imaging and performance characteristics”, Med. Phys., 45:7 (2018), 3063-3075 · doi:10.1002/mp.12957
[51] S. Manohar, M. Dantuma, “Current and future trends in photoacoustic breast imaging”, Photoacoustics, 16 (2019), 100134 · doi:10.1016/j.pacs.2019.04.004
[52] M.G. Marmot, D.G. Altman, D.A. Cameron, J.A. Dewar, S.G. Thompson, M. Wilcox, “The benefits and harms of breast cancer screening: an independent review”, Br. J. Cancer, 108:11 (2013), 2205-2240 · doi:10.1038/bjc.2013.177
[53] T.P. Matthews, K. Wang, C. Li, N. Duric, M.A. Anastasio, “Regularized dual averaging image reconstruction for full-wave ultrasound computed tomography”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 64:5 (2017), 811-825 · doi:10.1109/TUFFC.2017.2682061
[54] K.J. Opieliński, P. Pruchnicki, P. Szymanowski, W.K. Szepieniec, H. Szweda, E. Świś, M. Jóźwik, M. Tenderenda, M. Bułkowski, “Multimodal ultrasound computer-assisted tomography: An approach to the recognition of breast lesions”, Comput. Med. Imaging Graph., 65 (2018), 102-114 · doi:10.1016/j.compmedimag.2017.06.009
[55] M. Pérez-Liva, J.L. Herraiz, J.M. Udias, E. Miller, B.T. Cox, B.E. Treeby, “Time domain reconstruction of sound speed and attenuation in ultrasound computed tomography using full wave inversion”, J. Acoust. Soc. Am., 141:3 (2017), 1595-1604 · doi:10.1121/1.4976688
[56] R. Sood, A.F. Rositch, D. Shakoor, E. Ambinder, K.-L-. Pool, E. Pollack, D.J. Mollura, L.A. Mullen, S.C. Harvey, “Ultrasound for breast cancer detection globally: A systematic review and meta-analysis”, J. Glob. Oncol., 5 (2019), 1-17 · doi:10.1200/JGO.19.11000
[57] A. Vourtsis, “Three-dimensional automated breast ultrasound: Technical aspects and first results”, Diagn. Interv. Imaging, 100:10 (2019), 579-592 · doi:10.1016/j.diii.2019.03.012
[58] K. Wang, T. Matthews, F. Anis, C. Li, N. Duric, M. Anastasio, “Waveform inversion with source encoding for breast sound speed reconstruction in ultrasound computed tomography”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 62:3 (2015), 475-493 · doi:10.1109/TUFFC.2014.006788
[59] Q. Zhu, S. Poplack, “A review of optical breast imaging: Multi-modality systems for breast cancer diagnosis”, Eur. J. Radiol., 129 (2020), 109067 · doi:10.1016/j.ejrad.2020.109067
[60] Jiaze He, Jing Rao, Jacob D. Fleming, Hom Nath Gharti, Luan T. Nguyen, “Gaines Morrison, Numerical ultrasonic full waveform inversion (FWI) for complex structures in coupled 2D solid/fluid media”, Smart Materials and Structures, 30:8 (2021), 085044 · doi:10.1088/1361-665X/ac0f44
[61] A.S. Kozelkov, O.L. Krutyakova, V.V. Kurulin, D.Yu. Strelets, M.A. Shishlenin, “The accuracy of numerical simulation of the acoustic wave propagations in a liquid medium based on Navier-Stokes equations”, Sib. Élektron. Mat. Izv., 18:2 (2021), 1238-1250 · Zbl 1475.65094 · doi:10.33048/semi.2021.18.094
[62] A.S. Shurup, “Numerical comparison of iterative and functional-analytical algorithms for inverse acoustic scattering”, Eurasian J. Math. Computer Appl., 10:1 (2022), 79-99
[63] O.D. Rumyantseva, A.S. Shurup, D.I. Zotov, “Possibilities for separation of scalar and vector characteristics of acoustic scatterer in tomographic polychromatic regime”, J. Inverse Ill-Posed Probl., 29:3 (2021), 407-420 · Zbl 1469.35262 · doi:10.1515/jiip-2020-0141
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.