×

Stochastic modeling of stationary scalar Gaussian processes in continuous time from autocorrelation data. (English) Zbl 07896659

Summary: We consider the problem of constructing a vector-valued linear Markov process in continuous time, such that its first coordinate is in good agreement with given samples of the scalar autocorrelation function of an otherwise unknown stationary Gaussian process. This problem has intimate connections to the computation of a passive reduced model of a deterministic time-invariant linear system from given output data in the time domain. We construct the stochastic model in two steps. First, we employ the AAA algorithm to determine a rational function which interpolates the \(z\)-transform of the discrete data on the unit circle and use this function to assign the poles of the transfer function of the reduced model. Second, we choose the associated residues as the minimizers of a linear inequality constrained least squares problem which ensures the positivity of the transfer function’s real part for large frequencies. We apply this method to compute extended Markov models for stochastic processes obtained from generalized Langevin dynamics in statistical physics. Numerical examples demonstrate that the algorithm succeeds in determining passive reduced models and that the associated Markov processes provide an excellent match of the given data.

MSC:

65C99 Probabilistic methods, stochastic differential equations
60G15 Gaussian processes

References:

[1] Anderson, BDO, An algebraic solution to the spectral factorization problem, IEEE Trans. Automat. Control, 12, 410-414, 1967 · doi:10.1109/TAC.1967.1098646
[2] Anderson, BDO, The inverse problem of stationary covariance generation, J. Stat. Phys., 1, 133-147, 1969 · doi:10.1007/BF01007246
[3] Anderson, BDO; Vongpanitlerd, S., Network analysis and synthesis: a modern systems theory approach, 1973, Englewood Cliffs, NJ: Prentice-Hall, Englewood Cliffs, NJ
[4] Bai, Z.; Freund, RW, Eigenvalue-based characterization and test for positive realness of scalar transfer functions, IEEE Trans. Automat. Control, 45, 2396-2402, 2000 · Zbl 0990.93044 · doi:10.1109/9.895582
[5] Bai, Z.; Freund, RW, A partial Padé-via-Lanczos method for reduced-order modeling, Linear Algebra Appl., 332-334, 139-164, 2001 · Zbl 0980.93012 · doi:10.1016/S0024-3795(00)00291-3
[6] Bini, DA; Iannazzo, B.; Meini, B., Numerical solution of algebraic Riccati equations, 2012, Philadelphia: SIAM, Philadelphia · Zbl 1244.65058
[7] Björck, Å., Numerical methods for least squares problems, 1996, Philadelphia: SIAM, Philadelphia · Zbl 0847.65023 · doi:10.1137/1.9781611971484
[8] Bockius, N., Shea, J., Jung, G., Schmid, F., Hanke, M.: Model reduction techniques for the computation of extended Markov parameterizations for generalized Langevin equations. J. Phys.: Condens. Matter 33, 214003 (2021)
[9] Brüll, T., Schröder, C.: Dissipativity enforcement via perturbation of para-Hermitian pencils. IEEE Trans. Circuits Syst. I. Regul. Pap. 60, 164-177 (2012) · Zbl 1468.94532
[10] Cherifi, K.; Goyal, P.; Benner, P., A non-intrusive method to inferring linear port-Hamiltonian realizations using time-domain data, Electron. Trans. Numer. Anal., 56, 102-116, 2022 · Zbl 1492.93037 · doi:10.1553/etna_vol56s102
[11] Coelho, CP; Phillips, J.; Silveira, LM, Convex programming approach for generating guaranteed passive approximations to tabulated frequency-data, IEEE Trans. Computer-Aided Design, 23, 293-301, 2004 · doi:10.1109/TCAD.2003.822107
[12] Derevianko, N.; Plonka, G.; Petz, M., From ESPRIT to ESPIRA: estimation of signal parameters by iterative rational approximation, IMA J. Numer. Anal., 43, 789-827, 2023 · Zbl 07673873 · doi:10.1093/imanum/drab108
[13] Fazzi, A.; Guglielmi, N.; Lubich, C., Finding the nearest passive or nonpassive system via Hamitonian eigenvalue optimization, SIAM J. Matrix Anal. Appl., 42, 1553-1580, 2021 · Zbl 1483.65097 · doi:10.1137/20M1376972
[14] Freund, RW; Jarre, F.; Vogelbusch, CH, Nonlinear semidefinite programming: sensitivity, convergence, and an application in passive reduced-order modeling, Math. Program., 109, 581-611, 2007 · Zbl 1147.90030 · doi:10.1007/s10107-006-0028-x
[15] Gillis, N.; Sharma, P., Finding the nearest positive-real system, SIAM J. Numer. Anal., 56, 1022-1047, 2018 · Zbl 1390.93296 · doi:10.1137/17M1137176
[16] Grivet-Talocia, S.: Passivity enforcement via perturbation of Hamiltonian matrices. IEEE Trans. Circuits Syst. I. Regul. Pap. 51, 1755-1749 (2004) · Zbl 1374.93084
[17] Hanke, M., Mathematical analysis of some iterative methods for the reconstruction of memory kernels, Electron. Trans. Numer. Anal., 54, 483-498, 2021 · Zbl 07399336 · doi:10.1553/etna_vol54s483
[18] Jung, G.; Hanke, M.; Schmid, F., Iterative reconstruction of memory kernels, J. Chem. Theory Comput., 13, 2481-2488, 2017 · doi:10.1021/acs.jctc.7b00274
[19] Jung, G.; Schmid, F., Fluctuation-dissipation relations far from equilibrium: a case study, Soft Matter, 17, 6413-6425, 2021 · doi:10.1039/D1SM00521A
[20] Kalman, R.E.: Linear stochastic filtering theory-reappraisal and outlook. In: Proceedings of the Symposium on System Theory, New York, 1965, Polytechnic Press, Brooklyn, pp. 197-205 (1965)
[21] Lindquist, A.; Picci, G., Linear stochastic systems, 2015, Heidelberg: Springer, Heidelberg · Zbl 1319.93001 · doi:10.1007/978-3-662-45750-4
[22] Nakatsukasa, Y.; Sète, O.; Trefethen, LN, The AAA algorithm for rational approximation, SIAM J. Sci. Comput., 40, A1494-A1522, 2018 · Zbl 1390.41015 · doi:10.1137/16M1106122
[23] Pavliotis, G.A.: Stochastic processes and applications. Diffusion Processes, the Fokker-Planck and Langevin Equations. Springer, New York (2014) · Zbl 1318.60003
[24] Plonka, G., Potts, D., Steidl, G., Tasche, M.: Numerical Fourier analysis. Springer, Cham (2018) · Zbl 1412.65001
[25] Saraswat, D., Achar, R., Nakhla, M.: Enforcing passivity for rational function based macromodels of tabulated data. In: Electrical Performance of Electrical Packaging (IEEE Cat. No. 03TH8710), IEEE, pp. 295-298 (2003)
[26] Schneider, C.; Werner, W., Some new aspects of rational interpolation, Math. Comp., 47, 285-299, 1986 · Zbl 0612.65005 · doi:10.1090/S0025-5718-1986-0842136-8
[27] Varah, JM, On fitting exponentials by nonlinear least squares, SIAM J. Sci. Comput., 6, 30-44, 1985 · Zbl 0561.65007 · doi:10.1137/0906003
[28] Weiss, L.; McDonough, RN, Prony’s method, \(z\)-transforms, and Padé approximation, SIAM Rev., 5, 145-149, 1963 · Zbl 0114.32805 · doi:10.1137/1005035
[29] Zwanzig, R., Nonequilibrium statistical mechanics, 2001, Oxford: Oxford University Press, Oxford · Zbl 1267.82001 · doi:10.1093/oso/9780195140187.001.0001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.