×

A new second-order dynamical method for solving linear inverse problems in Hilbert spaces. (English) Zbl 07894882

Summary: A new second-order dynamic method (SODM) is proposed for solving ill-posed linear inverse problems in Hilbert spaces. The SODM can be viewed as a combination of Tikhonov regularization and second-order asymptotical regularization methods. As a result, a double-regularization-parameter strategy is adopted. The regularization properties of SODM are demonstrated under both a priori and a posteriori stopping rules. In the context of time discretization, we propose several iterative schemes with different choices of damping parameters. A truncated discrepancy principle is employed as the stop criterion. Finally, numerical experiments are performed to show the efficiency of the SODM: on the whole, compared with the classical Tikhonov method and the first-order dynamical-system method, the SODM leads to more-accurate approximate solutions while requiring fewer-iterative numbers.

MSC:

47A52 Linear operators and ill-posed problems, regularization
65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
65R30 Numerical methods for ill-posed problems for integral equations
Full Text: DOI

References:

[1] Belgacem, F. B., Why is the Cauchy problem severely ill-posed?, Inverse Probl., 23, 823-836, 2007 · Zbl 1118.35060
[2] Belgacem, F. B.; Fekih, H. E., On Cauchy’s problem: I. A variational Steklov-Poincaré theory, Inverse Probl., 21, 1915-1936, 2005 · Zbl 1112.35054
[3] Berntsson, F.; Eldén, L., Numerical solution of a Cauchy problem for the Laplace equation, Inverse Probl., 17, 839-853, 2001 · Zbl 0993.65119
[4] Ito, K.; Jin, B., Inverse Problems: Tikhonov Theory and Algorithms, 2014, World Scientific
[5] Kirsch, A., An Introduction to the Mathematical Theory of Inverse Problems, 2011, Springer: Springer New York · Zbl 1213.35004
[6] Liu, X.; Zhang, B.; Yang, J., The inverse electromagnetic scattering problem in a piecewise homogeneous medium, Inverse Probl., 26, Article 125001 pp., 2010 · Zbl 1219.35363
[7] Cheng, X.; Gong, R.; Han, W., A new Kohn-Vogelius type formulation for inverse source problems, Inverse Probl. Imaging, 9, 1051-1067, 2015 · Zbl 1332.65157
[8] Gong, R.; Hofmann, B.; Zhang, Y., A new class of accelerated regularization methods, with application to bioluminescence tomography, Inverse Probl., 36, Article 055013 pp., 2020 · Zbl 1535.65072
[9] Gong, R.; Wang, G.; Cheng, X.; Han, W., A novel approach for studies of multispectral bioluminescence tomography, Numer. Math., 115, 553-583, 2010 · Zbl 1190.92021
[10] Zhang, Y.; Gulliksson, M.; Bennetts, V. M.H.; Schaffernicht, E., Reconstructing gas distribution maps via an adaptive sparse regularization algorithm, Inverse Probl. Sci. Eng., 24, 1186-1204, 2016 · Zbl 1348.76127
[11] Zhang, Y.; Forssén, P.; Fornstedt, T.; Gulliksson, M.; Dai, X., An adaptive regularization algorithm for recovering the rate constant distribution from biosensor data, Inverse Probl. Sci. Eng., 26, 1464-1489, 2018 · Zbl 1428.65037
[12] Wang, Y.; Zhang, Y.; Lukyanenko, D.; Yagola, A., Recovering aerosol particle size distribution function on the set of bounded piecewise-convex functions, Inverse Probl. Sci. Eng., 21, 339-354, 2013 · Zbl 1267.76111
[13] Yao, Z.; Zhang, Y.; Bai, Z.; Eddy, W. F., Estimating the number of sources in magnetoencephalography using spiked population eigenvalues, J. Am. Stat. Assoc., 113, 505-518, 2018 · Zbl 1398.62353
[14] Neto, F. D.M.; da Silva Neto, A. J., An Introduction to Inverse Problems with Applications, 2013, Springer · Zbl 1264.65183
[15] Vogel, C. R., Computational Methods for Inverse Problems, vol. 23, 2002, Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA · Zbl 1008.65103
[16] Xiao, T.; Yu, S.; Wang, Y., Numerical Solution of Inverse Problem, 2003, Science
[17] Osher, S.; Burger, M.; Goldfarb, D.; Xu, J.; Yin, W., An iterative regularization method for total variation-based image restoration, Multiscale Model. Simul., 4, 460-489, 2005 · Zbl 1090.94003
[18] Kaltenbacher, B.; Neubauer, A.; Scherzer, O., Iterative Regularization Methods for Nonlinear Ill-Posed Problems, 2008, De Gruyter · Zbl 1145.65037
[19] Tautenhahn, U., On the asymptotical regularization of nonlinear ill-posed problems, Inverse Probl., 10, 1405-1418, 1994 · Zbl 0828.65055
[20] Zhang, Y.; Hofmann, B., On fractional asymptotical regularization of linear ill-posed problems in Hilbert spaces, Fract. Calc. Appl. Anal., 22, 699-721, 2019 · Zbl 1478.65059
[21] Zhang, Y.; Gong, R., Second order asymptotical regularization methods for inverse problems in partial differential equations, J. Comput. Appl. Math., 375, Article 112798 pp., 2020 · Zbl 1435.65189
[22] Zhang, Y.; Hofmann, B., On the second-order asymptotical regularization of linear ill-posed inverse problems, Appl. Anal., 99, 1000-1025, 2020 · Zbl 1443.47014
[23] Hoang, N. S.; Ramm, A. G., Solving ill-conditioned linear algebraic systems by the dynamical systems method, Inverse Probl. Sci. Eng., 16, 617-630, 2008 · Zbl 1258.65036
[24] Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, 2011, Springer: Springer New York · Zbl 1220.46002
[25] Feng, Z.; Li, F.; Lv, Y.; Zhang, S., A note on Cauchy-Lipschitz-Picard theorem, J. Inequal. Appl., 2016, Article 271 pp., 2016 · Zbl 1354.34028
[26] Li, T., Integral solution of second order linear differential equations, Math. Bull., 41-43, 1990, (in Chinese)
[27] Zhang, Y.; Hofmann, B., Two new non-negativity preserving iterative regularization methods for ill-posed inverse problems, Inverse Probl. Imaging, 15, 229-256, 2021 · Zbl 1520.47029
[28] Hansen, P. C., Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems, Numer. Algorithms, 6, 1-35, 1994 · Zbl 0789.65029
[29] Hestenes, M. R.; Stiefel, E., Methods of conjugate gradients for solving linear systems, J. Res. Natl. Bur. Stand., 49, 6, 409-436, 1952 · Zbl 0048.09901
[30] Mokhtarzadeh, M.; Mokhtary, R.; Chegini, N., Bi-CG: an effective solver for three fields domain decomposition method in parallel environments, Appl. Math. Comput., 174, 2, 1196-1205, 2006 · Zbl 1091.65033
[31] Saad, Y.; Schultz, M. H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 3, 856-869, 1986 · Zbl 0599.65018
[32] Bai, Z. Z.; Parlett, B. N.; Wang, Z. Q., On generalized successive overrelaxation methods for augmented linear systems, Numer. Math., 102, 1-38, 2005 · Zbl 1083.65034
[33] Morikuni, K.; Hayami, K., Inner-iteration Krylov subspace methods for least squares problems, SIAM J. Matrix Anal. Appl., 34, 1, 1-22, 2013 · Zbl 1269.65039
[34] Cheng, X.; Gong, R.; Han, W.; Zheng, X., A novel coupled complex boundary method for solving inverse source problems, Inverse Probl., 30, Article 055002 pp., 2014 · Zbl 1290.35324
[35] Cheng, X. L.; Gong, R. F.; Han, W., A coupled complex boundary method for the Cauchy problem, Inverse Probl. Sci. Eng., 24, 9, 1510-1527, 2016 · Zbl 1348.65157
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.