×

Pattern formations in nonlinear reaction-diffusion systems with strong localized impurities. (English) Zbl 07893990

Summary: In this manuscript, a general geometric singular perturbation framework to study pattern formations in nonlinear reaction-diffusion (R-D) systems with single or multiple strong localized impurities is developed. In the method, we divide the spatial domain into fast and slow regions respectively near and far away from the positions of impurities. In each region, the limiting fast or slow system is defined separately in terms of different scales. By so doing, the R-D system with strong localized impurities can be transformed into a singularly perturbed problem with suitable slow-fast structure. We then solve the limiting fast and slow flow explicitly and matching them approximately. Accordingly, the existence and stability criterion on the pinned 1-pulse and multiple-pulse solutions can be set up analytically. Numerical simulations are also performed to verify the theoretical predictions.

MSC:

35B25 Singular perturbations in context of PDEs
35B35 Stability in context of PDEs
35B36 Pattern formations in context of PDEs
35K40 Second-order parabolic systems
35K57 Reaction-diffusion equations

Software:

DLMF
Full Text: DOI

References:

[1] Benson, D. L.; Sherratt, J. A.; Maini, P. K., Diffusion driven instability in an inhomogeneous domain, Bull. Math. Biol., 55, 2, 365-384, 1993 · Zbl 0758.92003
[2] Bragard, J.; Witt, A.; Laroze, D.; Hawks, C.; Elorza, J.; Rodríguez Cantalapiedra, I.; Peñaranda, A.; Echebarria, B., Conductance heterogeneities induced by multistability in the dynamics of coupled cardiac gap junctions, Chaos, 31, 7, Article 073144 pp., 2021
[3] Brazhnik, P. K.; Tyson, J. J., Steady-state autowave patterns in a two-dimensional excitable medium with a band of different excitability, Physica D, 102, 3-4, 300-312, 1997 · Zbl 0904.92001
[4] Coppel, W. A., Dichotomies in Stability Theory, vol. 629, 2006, Springer: Springer Berlin · Zbl 0376.34001
[5] Derks, G., Stability of fronts in inhomogeneous wave equations, Acta Appl. Math., 137, 61-78, 2015 · Zbl 1320.35134
[6] Derks, G.; Doelman, A.; Knight, C. J.; Susanto, H., Pinned fluxons in a Josephson junction with a finite-length inhomogeneity, Eur. J. Appl. Math., 23, 2, 201-244, 2012 · Zbl 1245.82086
[7] Doelman, A.; Gardner, R. A.; Kaper, T. J., Large stable pulse solutions in reaction-diffusion equations, Indiana Univ. Math. J., 443-507, 2001 · Zbl 0994.35058
[8] Doelman, A.; Rademacher, J.; de Rijk, B.; Veerman, F., Destabilization mechanisms of periodic pulse patterns near a homoclinic limit, SIAM J. Appl. Dyn. Syst., 17, 2, 1833-1890, 2018 · Zbl 1400.35164
[9] Doelman, A.; Van Heijster, P.; Kaper, T. J., Pulse dynamics in a three-component system: existence analysis, J. Dyn. Differ. Equ., 21, 73-115, 2009 · Zbl 1173.35068
[10] Doelman, A.; Van Heijster, P.; Shen, J., Pulse dynamics in reaction-diffusion equations with strong spatially localized impurities, Philos. Trans. R. Soc. A, 376, 2117, Article 20170183 pp., 2018 · Zbl 1402.35138
[11] Doelman, A.; van Heijster, P.; Xie, F., A geometric approach to stationary defect solutions in one space dimension, SIAM J. Appl. Dyn. Syst., 15, 2, 655-712, 2016 · Zbl 1343.34041
[12] Dror, N.; Malomed, B. A., Solitons supported by localized nonlinearities in periodic media, Phys. Rev. A, 83, 3, Article 033828 pp., 2011
[13] Fenichel, N., Geometric singular perturbation theory for ordinary differential equations, J. Differ. Equ., 31, 1, 53-98, 1979 · Zbl 0476.34034
[14] Fife, P. C.; McLeod, J. B., The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Ration. Mech. Anal., 65, 335-361, 1977 · Zbl 0361.35035
[15] Fisher, R. A., The wave of advance of advantageous genes, Ann. Eugen., 7, 4, 355-369, 1937 · JFM 63.1111.04
[16] Goodman, R. H.; Haberman, R., Interaction of Sine-Gordon kinks with defects: the two-bounce resonance, Physica D, 195, 3-4, 303-323, 2004 · Zbl 1060.35124
[17] Goodman, R. H.; Haberman, R., Chaotic scattering and the n-bounce resonance in solitary-wave interactions, Phys. Rev. Lett., 98, 10, Article 104103 pp., 2007
[18] Ikeda, H.; Ei, S.-I., Front dynamics in heterogeneous diffusive media, Physica D, 239, 17, 1637-1649, 2010 · Zbl 1207.37041
[19] Kapitula, T.; Promislow, K., Spectral and Dynamical Stability of Nonlinear Waves, vol. 457, 2013, Springer: Springer New York · Zbl 1297.37001
[20] Kivshar, Y. S.; Fei, Z.; Vázquez, L., Resonant soliton-impurity interactions, Phys. Rev. Lett., 67, 10, 1177, 1991
[21] Knight, C. J.; Derks, G., A stability criterion for the non-linear wave equation with spatial inhomogeneity, J. Differ. Equ., 259, 9, 4745-4762, 2015 · Zbl 1329.35055
[22] Knight, C. J.; Derks, G.; Doelman, A.; Susanto, H., Stability of stationary fronts in a non-linear wave equation with spatial inhomogeneity, J. Differ. Equ., 254, 2, 408-468, 2013 · Zbl 1259.35029
[23] Kovacic, J. J., An algorithm for solving second order linear homogeneous differential equations, J. Symb. Comput., 2, 1, 3-43, 1986 · Zbl 0603.68035
[24] Leach, J.; Needham, D.; Kay, A., The evolution of reaction-diffusion waves in a class of scalar reaction-diffusion equations: algebraic decay rates, Physica D, 167, 3-4, 153-182, 2002 · Zbl 1002.35068
[25] J. Li, J. Shen, Q. Zhang, Pinned pulses in nonlinear reaction-diffusion equations with strong localized impurities, submitted for publication.
[26] McLaughlin, D. W.; Scott, A. C., Perturbation analysis of fluxon dynamics, Phys. Rev. A, 18, 4, 1652, 1978
[27] Nishiura, Y.; Teramoto, T.; Yuan, X., Heterogeneity-induced spot dynamics for a three-component reaction-diffusion system, Commun. Pure Appl. Anal., 11, 1, 307-338, 2011 · Zbl 1264.35038
[28] Nishiura, Y.; Teramoto, T.; Yuan, X.; Ueda, K.-I., Dynamics of traveling pulses in heterogeneous media, Chaos, 17, 3, Article 037104 pp., 2007 · Zbl 1163.37356
[29] Nist, Digital library of mathematical functions, 2010
[30] Prat, A.; Li, Y.-X.; Bressloff, P., Inhomogeneity-induced bifurcation of stationary and oscillatory pulses, Physica D, 202, 3-4, 177-199, 2005 · Zbl 1082.35025
[31] Shen, J.; Zhang, X., Traveling pulses in a coupled Fitzhugh-Nagumo equation, Physica D, 418, Article 132848 pp., 2021 · Zbl 1492.34044
[32] Teramoto, T.; Yuan, X.; Bär, M.; Nishiura, Y., Onset of unidirectional pulse propagation in an excitable medium with asymmetric heterogeneity, Phys. Rev. E, 79, 4, Article 046205 pp., 2009
[33] Van Heijster, P.; Doelman, A.; Kaper, T. J.; Nishiura, Y.; Ueda, K.-I., Pinned fronts in heterogeneous media of jump type, Nonlinearity, 24, 1, 127, 2010 · Zbl 1208.35010
[34] van Heijster, P.; Doelman, A.; Kaper, T. J.; Promislow, K., Front interactions in a three-component system, SIAM J. Appl. Dyn. Syst., 9, 2, 292-332, 2010 · Zbl 1197.35047
[35] Veerman, F.; Doelman, A., Pulses in a Gierer-Meinhardt equation with a slow nonlinearity, SIAM J. Appl. Dyn. Syst., 12, 1, 28-60, 2013 · Zbl 1282.35049
[36] Wei, J.; Winter, M., Stable spike clusters for the one-dimensional Gierer-Meinhardt system, Eur. J. Appl. Math., 28, 4, 576-635, 2017 · Zbl 1386.35165
[37] Xin, J., Front propagation in heterogeneous media, SIAM Rev., 42, 2, 161-230, 2000 · Zbl 0951.35060
[38] Yuan, X.; Teramoto, T.; Nishiura, Y., Heterogeneity-induced defect bifurcation and pulse dynamics for a three-component reaction-diffusion system, Phys. Rev. E, 75, 3, Article 036220 pp., 2007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.