×

Entanglement entropy of ground states of the three-dimensional ideal Fermi gas in a magnetic field. (English) Zbl 07893516

Summary: We study the asymptotic growth of the entanglement entropy of ground states of non-interacting (spinless) fermions in \({{\mathbb{R}}}^3\) subject to a constant magnetic field perpendicular to a plane. As for the case with no magnetic field we find, to leading order \(L^2\ln (L)\), a logarithmically enhanced area law of this entropy for a bounded, piecewise Lipschitz region \(L\Lambda \subset{{\mathbb{R}}}^3\) as the scaling parameter \(L\) tends to infinity. This is in contrast to the two-dimensional case since particles can now move freely in the direction of the magnetic field, which causes the extra \(\ln (L)\) factor. The explicit expression for the coefficient of the leading order contains a surface integral similar to the Widom-Sobolev formula in the non-magnetic case. It differs, however, in the sense that the dependence on the boundary, \( \partial \Lambda \), is not solely on its area but on the “surface perpendicular to the direction of the magnetic field”. We utilize a two-term asymptotic expansion by Widom (up to an error term of order one) of certain traces of one-dimensional Wiener-Hopf operators with a discontinuous symbol. This leads to an improved error term of the order \(L^2\) of the relevant trace for piecewise \(\textsf{C}^{1,\alpha }\) smooth surfaces \(\partial \Lambda \).

MSC:

47G30 Pseudodifferential operators
35S05 Pseudodifferential operators as generalizations of partial differential operators
45M05 Asymptotics of solutions to integral equations
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators

Software:

DLMF

References:

[1] Abdul-Rahman, H.; Fischbacher, C.; Stolz, G., Entanglement bounds in the XXZ quantum spin chain, Ann. Henri Poincaré, 21, 2327-2366, 2020 · Zbl 1447.82017 · doi:10.1007/s00023-020-00918-0
[2] Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975) · Zbl 0314.46030
[3] Amico, L.; Fazio, R.; Osterloh, A.; Vedral, V., Entanglement in many-body systems, Rev. Mod. Phys., 80, 517-576, 2008 · Zbl 1205.81009 · doi:10.1103/RevModPhys.80.517
[4] Beaud, V., Warzel, S.: Bounds on the entanglement entropy of droplet states in the XXZ spin chain. J. Math. Phys. 59, 012109 (2018). doi:10.1063/1.5007035 · Zbl 1383.82008
[5] Charles, L.; Estienne, B., Entanglement entropy and Berezin-Toeplitz operators, Commun. Math. Phys., 376, 521-554, 2020 · Zbl 1508.81102 · doi:10.1007/s00220-019-03625-y
[6] Eisert, J.; Cramer, M.; Plenio, MB, Area laws for the entanglement entropy—a review, Rev. Mod. Phys., 82, 277, 2010 · Zbl 1205.81035 · doi:10.1103/RevModPhys.82.277
[7] Elgart, A.; Klein, A.; Stolz, G., Many-body localization in the droplet spectrum of the random XXZ quantum spin chain, J. Funct. Anal., 275, 211-258, 2018 · Zbl 1397.82030 · doi:10.1016/j.jfa.2017.11.001
[8] Elgart, A.; Pastur, L.; Shcherbina, M., Large block properties of the entanglement entropy of free disordered Fermions, J. Stat. Phys., 166, 1092-1127, 2017 · Zbl 1361.82017 · doi:10.1007/s10955-016-1656-z
[9] Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Revised Edition (1st edn.), Chapman and Hall/CRC (2015) · Zbl 1310.28001
[10] Fock, V., Bemerkung zur Quantelung des harmonischen Oszillators im Magnetfeld, Z. Phys., 47, 446-448, 1928 · JFM 54.0966.02 · doi:10.1007/BF01390750
[11] Fischbacher, C., Schulte, R.: Lower bound on the entanglement entropy of the XXZ spin ring. arXiv:2007.00735 · Zbl 07753895
[12] Fischbacher, C.; Ogunkoya, O., Entanglement entropy bounds in the higher spin XXZ chain, J. Math. Phys., 62, 101901, 2021 · Zbl 1482.82012 · doi:10.1063/5.0042861
[13] Gioev, D.; Klich, I., Entanglement entropy of fermions in any dimension and the Widom conjecture, Phys. Rev. Lett., 96, 100503, 2006 · doi:10.1103/PhysRevLett.96.100503
[14] Guillemin, V., Pollack, A.: Differential Topology. Prentice-Hall (1974) · Zbl 0361.57001
[15] Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K., Quantum entanglement, Rev. Mod. Phys., 81, 865-942, 2009 · Zbl 1205.81012 · doi:10.1103/RevModPhys.81.865
[16] Jin, B-Q; Korepin, VE, Quantum spin chain, Toeplitz determinants and the Fisher-Hartwig conjecture, J. Stat. Phys., 116, 79, 2004 · Zbl 1142.82314 · doi:10.1023/B:JOSS.0000037230.37166.42
[17] Klich, I., Lower entropy bounds and particle number fluctuations in a Fermi sea, J. Phys. A Math. Gen., 39, L85, 2006 · Zbl 1088.81517 · doi:10.1088/0305-4470/39/4/L02
[18] Landau, L., Diamagnetismus der Metalle, Z. Phys., 64, 629-637, 1930 · JFM 56.1318.10 · doi:10.1007/BF01397213
[19] Landau, HJ; Widom, H., Eigenvalue distribution of time and frequency limiting, J. Math. Anal. Appl., 77, 469-481, 1980 · Zbl 0471.47029 · doi:10.1016/0022-247X(80)90241-3
[20] Leschke, H.; Sobolev, AV; Spitzer, W., Scaling of Rényi entanglement entropies of the free Fermi-gas ground state: a rigorous proof, Phys. Rev. Lett., 112, 160403, 2014 · doi:10.1103/PhysRevLett.112.160403
[21] Leschke, H.; Sobolev, AV; Spitzer, W., Asymptotic growth of the local ground-state entropy of the ideal Fermi gas in a constant magnetic field, Commun. Math. Phys., 381, 673-705, 2021 · Zbl 1456.82212 · doi:10.1007/s00220-020-03907-w
[22] Leschke, H.; Sobolev, AV; Spitzer, W., Trace formulas for Wiener-Hopf operators with applications to entropies of free fermionic equilibrium states, J. Funct. Anal., 273, 1049-1094, 2017 · Zbl 1377.47012 · doi:10.1016/j.jfa.2017.04.005
[23] Leschke, H.; Sobolev, AV; Spitzer, W., Rényi entropies of the free Fermi gas in multi-dimensional space at high temperature, Oper. Theory Adv. Appl., 289, 477-508, 2022 · Zbl 07827914
[24] Müller, P.; Pastur, L.; Schulte, R., How much delocalisation is needed for an enhanced area law of the entanglement entropy?, Commun. Math. Phys., 376, 649-679, 2020 · Zbl 1439.81023 · doi:10.1007/s00220-019-03523-3
[25] Müller, P.; Schulte, R., Stability of the enhanced area law of the entanglement entropy, Ann. Henri Poincaré, 21, 3639-3658, 2020 · Zbl 1454.81070 · doi:10.1007/s00023-020-00961-x
[26] Müller, P.; Schulte, R., Stability of a Szegő-type asymptotics, J. Math. Phys., 64, 022101, 2023 · Zbl 1511.81048 · doi:10.1063/5.0135006
[27] NIST Digital Library of Mathematical Functions. In: Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V., Cohl, H.S., McClain, M.A. (eds.). http://dlmf.nist.gov/. Release 1.1.5 of 2022-03-15
[28] Pastur, L.; Slavin, V., Area law scaling for the entropy of disordered quasifree fermions, Phys. Rev. Lett., 113, 150404, 2014 · doi:10.1103/PhysRevLett.113.150404
[29] Pfeiffer, P.: On the stability of the area law for the entanglement entropy of the Landau Hamiltonian. arXiv:2102.07287
[30] Pfirsch, B.; Sobolev, AV, Formulas of Szegő type for the periodic Schrödinger operator, Commun. Math. Phys., 358, 675-704, 2018 · Zbl 1468.34122 · doi:10.1007/s00220-018-3106-z
[31] Rodríguez, ID; Sierra, G., Entanglement entropy of integer Quantum Hall states, Phys. Rev. B, 80, 153303, 2009 · doi:10.1103/PhysRevB.80.153303
[32] Sobolev, AV, Pseudo-differential operators with discontinuous symbols: Widom’s Conjecture, Mem. AMS, 222, 1043, 2013 · Zbl 1297.47054
[33] Sobolev, AV, Wiener-Hopf operators in higher dimensions: the Widom conjecture for piece-wise smooth domains, Integr. Equ. Oper. Theory, 81, 435-449, 2015 · Zbl 1307.47054 · doi:10.1007/s00020-014-2185-2
[34] Sobolev, AV, On the Schatten-von Neumann properties of some pseudo-differential operators, J. Funct. Anal., 266, 5886-5911, 2014 · Zbl 1298.35260 · doi:10.1016/j.jfa.2014.02.038
[35] Sobolev, AV, Quasi-classical asymptotics for functions of Wiener-Hopf operators: smooth vs non-smooth symbols, Geom. Funct. Anal., 27, 676-725, 2017 · Zbl 1422.47054 · doi:10.1007/s00039-017-0408-9
[36] Widom, H.: On a class of integral operators with discontinuous symbol. Toeplitz centennial (Tel Aviv, 1981), pp. 477-500, Operator Theory: Adv. Appl., 4, Birkhäuser, Basel-Boston, Mass (1982) · Zbl 0483.47037
[37] Widom, H., On a class of integral operators on a half-space with discontinuous symbol, J. Funct. Anal., 88, 1, 166-193, 1990 · Zbl 0699.45013 · doi:10.1016/0022-1236(90)90124-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.