×

Fitted meshes on an unfitted grid based on scaled boundary finite element analysis. (English) Zbl 07892967

MSC:

65-XX Numerical analysis
76-XX Fluid mechanics

Software:

IIMPACK; CutFEM
Full Text: DOI

References:

[1] Hansbo, Peter, Nitsche’s method for interface problems in computa-tional mechanics, GAMM-Mitt, 28, 2, 183-206, 2005 · Zbl 1179.65147
[2] Xie, Hui; Li, Zhilin; Qiao, Zhonghua, A finite element method for elasticity interface problems with locally modified triangulations, Int J Numer Anal Model, 8, 2, 189, 2011 · Zbl 1208.74170
[3] Wang, Bao; Xia, Kelin; Wei, Guo-Wei, Matched interface and boundary method for elasticity interface problems, J Comput Appl Math, 285, 203-225, 2015 · Zbl 1325.74159
[4] Seyidmamedov, Z. Muradoglu; Ozbilge, Ebru, A mathematical model and numerical solution of interface problems for steady state heat conduction, Math Probl Eng, 2006, 2006 · Zbl 1427.80030
[5] Dsouza, Shaima M.; Pramod, ALN; Ooi, Ean Tat; Song, Chongmin; Natarajan, Sundararajan, Robust modelling of implicit interfaces by the scaled boundary finite element method, Eng Anal Bound Elem, 124, 266-286, 2021 · Zbl 1464.74261
[6] Shahil, Khan M. F.; Balandin, Alexander A., Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials, Nano Lett, 12, 2, 861-867, 2012
[7] Butler, Keith T.; Sai Gautam, Gopalakrishnan; Canepa, Pieremanuele, Designing interfaces in energy materials applications with first-principles calculations, npj Comput Mater, 5, 1, 19, 2019
[8] Lu, Helen H.; Subramony, Siddarth D.; Boushell, Margaret K.; Zhang, Xinzhi, Tissue engineering strategies for the regeneration of orthopedic interfaces, Ann Biomed Eng, 38, 2142-2154, 2010
[9] Wei, Guo-Wei, Differential geometry based multiscale models, Bull Math Biol, 72, 1562-1622, 2010 · Zbl 1198.92001
[10] Wei, Guo-Wei, Multiscale, multiphysics and multidomain models I: Basic theory, J Theoret Comput Chem, 12, 08, Article 1341006 pp., 2013
[11] Deresiewicz, H.; Rice, J. T., The effect of boundaries on wave propagation in a liquid-filled porous solid: V. Transmission across a plane interface, Bull Seismol Soc Am, 54, 1, 409-416, 1964
[12] Komatitsch, Dimitri; Barnes, Christophe; Tromp, Jeroen, Wave propagation near a fluid-solid interface: A spectral-element approach, Geophysics, 65, 2, 623-631, 2000
[13] Nahta, R.; Moran, Brian, Domain integrals for axisymmetric interface crack problems, Int J Solids Struct, 30, 15, 2027-2040, 1993 · Zbl 0782.73060
[14] Huang, Kai; Guo, Licheng; Yu, Hongjun; Jia, Pengfei; Kitamura, Takayuki, A domain-independent interaction integral method for evaluating the dynamic stress intensity factors of an interface crack in nonhomogeneous materials, Int J Solids Struct, 100, 547-557, 2016
[15] Hou, Thomas Y.; Li, Zhilin; Osher, Stanley; Zhao, Hongkai, A hybrid method for moving interface problems with application to the hele-shaw flow, J Comput Phys, 134, 2, 236-252, 1997 · Zbl 0888.76067
[16] Mu, Lin; Wang, Junping; Ye, Xiu; Zhao, Shan, A new weak Galerkin finite element method for elliptic interface problems, J Comput Phys, 325, 157-173, 2016 · Zbl 1380.65383
[17] Li, Zhilin, Immersed interface methods for moving interface problems, Numer Algorithms, 14, 4, 269-293, 1997 · Zbl 0886.65096
[18] Funari, Marco Francesco; Greco, Fabrizio; Lonetti, Paolo, A moving interface finite element formulation for layered structures, Composites B, 96, 325-337, 2016
[19] Peskin, Charles S., The immersed boundary method, Acta Numer, 11, 479-517, 2002 · Zbl 1123.74309
[20] Li, Zhilin; Ito, Kazufumi, The immersed interface method: numerical solutions of PDEs involving interfaces and irregular domains, 2006, SIAM · Zbl 1122.65096
[21] LeVeque, Randall J.; Li, Zhilin, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J Numer Anal, 31, 4, 1019-1044, 1994 · Zbl 0811.65083
[22] Gong, Yan; Li, Zhilin, Immersed interface finite element methods for elasticity interface problems with non-homogeneous jump conditions, Numer Math Theory Methods Appl, 3, 1, 23-39, 2010 · Zbl 1224.65266
[23] He, Xiaoming; Lin, Tao; Lin, Yanping, Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions, Int J Numer Anal Model, 8, 2, 2011 · Zbl 1211.65155
[24] Fries, Thomas-Peter; Belytschko, Ted, The extended/generalized finite element method: an overview of the method and its applications, Int J Numer Methods Eng, 84, 3, 253-304, 2010 · Zbl 1202.74169
[25] Bhattacharya, S.; Singh, I. V.; Mishra, B. K., Fatigue life simulation of functionally graded materials under cyclic thermal load using XFEM, Int J Mech Sci, 82, 41-59, 2014
[26] Burman, Erik; Claus, Susanne; Hansbo, Peter; Larson, Mats G.; Massing, André, CutFEM: discretizing geometry and partial differential equations, Internat J Numer Methods Engrg, 104, 7, 472-501, 2015 · Zbl 1352.65604
[27] Hansbo, Peter; Larson, Mats G.; Larsson, Karl, Cut finite element methods for linear elasticity problems, (Geometrically unfitted finite element methods and applications: proceedings of the UCL workshop 2016, 2017, Springer), 25-63 · Zbl 1390.74180
[28] Papadopoulo, Théodore; Vallaghé, Sylvain, Implicit meshing for finite element methods using levelsets, (2007 IEEE 11th international conference on computer vision, 2007, IEEE), 1-8
[29] Mondal, D. P.; Ramakrishnan, N.; Das, S., FEM modeling of the interface and its effect on the elastio-plastic behavior of metal matrix composites, Mater Sci Eng A, 433, 1-2, 286-290, 2006
[30] Oevermann, Michael; Scharfenberg, Carsten; Klein, Rupert, A sharp interface finite volume method for elliptic equations on cartesian grids, J Comput Phys, 228, 14, 5184-5206, 2009 · Zbl 1169.65343
[31] Natarajan, Sundararajan; Dharmadhikari, Prasad; Annabattula, Ratna Kumar; Zhang, Junqi; Ooi, Ean Tat; Song, Chongmin, Extension of the scaled boundary finite element method to treat implicitly defined interfaces without enrichment, Comput Struct, 229, Article 106159 pp., 2020
[32] Khoei, Amir R.; Yasbolaghi, R.; Biabanaki, SOR, A polygonal-FEM technique in modeling large sliding contact on non-conformal meshes: A study on polygonal shape functions, Eng Comput, 32, 5, 1391-1431, 2015
[33] Song, Chongmin; Wolf, J. P., The scaled boundary finite element method alias consistent infinitesimal finite-element cell method for elastodynamics, Comput Methods Appl Mech Engrg, 147, 329-355, 1997 · Zbl 0897.73069
[34] Man, Hou; Song, Chongmin; Natarajan, Sundararajan; Ooi, Ean Tat; Birk, Carlin, Towards automatic stress analysis using scaled boundary finite element method with quadtree mesh of high-order elements, 2014, arXiv preprint arXiv:1402.5186
[35] Deeks, Andrew J.; Wolf, JP1913074, A virtual work derivation of the scaled boundary finite-element method for elastostatics, Comput Mech, 28, 489-504, 2002 · Zbl 1076.74552
[36] Song, Chongmin; Wolf, John P., The scaled boundary finite element method—alias consistent infinitesimal finite element cell method—for diffusion, Internat J Numer Methods Engrg, 45, 10, 1403-1431, 1999 · Zbl 1062.74627
[37] Bazyar, Mohammad Hossein; Talebi, Abbas, Scaled boundary finite-element method for solving non-homogeneous anisotropic heat conduction problems, Appl Math Model, 39, 23-24, 7583-7599, 2015 · Zbl 1443.80001
[38] Chen, Xiaojun; Birk, Carolin; Song, Chongmin, Numerical modelling of wave propagation in anisotropic soil using a displacement unit-impulse-response-based formulation of the scaled boundary finite element method, Soil Dyn Earthq Eng, 65, 243-255, 2014
[39] Yang, Zhenjun, Application of scaled boundary finite element method in static and dynamic fracture problems, Acta Mech Sin, 22, 3, 243-256, 2006 · Zbl 1202.74187
[40] Hirshikesh; Pramod, ALN; Annabattula, RK; Ooi, ET; Song, C.; Natarajan, S., Adaptive phase-field modeling of brittle fracture using the scaled boundary finite element method, Comput Methods Appl Mech Engrg, 355, 284-307, 2019 · Zbl 1441.74206
[41] Marigo, Jean-Jacques; Maurini, Corrado; Pham, Kim, An overview of the modelling of fracture by gradient damage models, Meccanica, 51, 3107-3128, 2016 · Zbl 1374.74109
[42] Lorentz, Eric; Cuvilliez, Sam; Kazymyrenko, Kyrylo, Modelling large crack propagation: from gradient damage to cohesive zone models, Int J Fract, 178, 1, 85-95, 2012
[43] Ooi, Ean Tat; Song, Chongmin; Tin-Loi, Francis, A scaled boundary polygon formulation for elasto-plastic analyses, Comput Methods Appl Mech Engrg, 268, 905-937, 2014 · Zbl 1295.74102
[44] Ooi, Ean Tat; Song, Chongmin; Natarajan, Sundararajan, A scaled boundary finite element formulation for poroelasticity, Internat J Numer Methods Engrg, 114, 8, 905-929, 2018 · Zbl 07878389
[45] Natarajan, Sundararajan; Ooi, Ean Tat; Birk, Carolin; Song, Chongmin, Adaptive modelling of dynamic brittle fracture-a combined phase field regularized cohesive zone model and scaled boundary finite element approach, Int J Fract, 236, 1, 87-108, 2022
[46] Osher, Stanley; Sethian, James A., Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-Jacobi formulations, J Comput Phys, 79, 1, 12-49, 1988 · Zbl 0659.65132
[47] Song, Chongmin, The scaled boundary finite element method: introduction to theory and implementation, 2018, John Wiley & Sons
[48] Hansbo, Anita; Hansbo, Peter, An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems, Comput Methods Appl Mech Engrg, 191, 47-48, 5537-5552, 2002 · Zbl 1035.65125
[49] Bordas, Stéphane PA; Natarajan, Sundararajan; Kerfriden, Pierre; Augarde, Charles Edward; Mahapatra, D. Roy; Rabczuk, Timon, On the performance of strain smoothing for quadratic and enriched finite element approximations (XFEM/GFEM/PUFEM), Internat J Numer Methods Engrg, 86, 4-5, 637-666, 2011 · Zbl 1216.74019
[50] Burman, Erik; Hansbo, Peter; Larson, Mats, A cut finite element method with boundary value correction, Math Comp, 87, 310, 633-657, 2018 · Zbl 1380.65362
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.