×

Duality-based error control for the Signorini problem. (English) Zbl 07892758

Summary: In this paper we study the a posteriori bounds for a conforming piecewise linear finite element approximation of the Signorini problem. We prove new rigorous a posteriori estimates of residual type in \(\mathrm{L}^p\), for \(p\in (4,\infty)\) in two spatial dimensions. This new analysis treats the positive and negative parts of the discretization error separately, requiring a novel sign- and bound-preserving interpolant, which is shown to have optimal approximation properties. The estimates rely on the sharp dual stability results on the problem in \(\mathrm{W}^{2,(4-\varepsilon)/3}\) for any \(\varepsilon\ll 1\). We summarize extensive numerical experiments aimed at testing the robustness of the estimator to validate the theory.

MSC:

35J86 Unilateral problems for linear elliptic equations and variational inequalities with linear elliptic operators
65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs

References:

[1] Ainsworth, M. and Oden, J. T., A Posteriori Error Estimation in Finite Element Analysis, , John Wiley & Sons, 2011.
[2] Apel, T. and Nicaise, S., Regularity of the solution of the scalar Signorini problem in polygonal domains, Results Math., 75 (2020), 75. · Zbl 1443.35017
[3] Arndt, D., Bangerth, W., Clevenger, T. C., Davydov, D., Fehling, M., Garcia-Sanchez, D., Harper, G., Heister, T., Heltai, L., Kronbichler, M., et al., The deal.II library, Version 9.1, J. Numer. Math., 27 (2019), pp. 203-213. · Zbl 1435.65010
[4] Ashby, B., Bortolozo, C., Lukyanov, A., and Pryer, T., Adaptive modelling of variably saturated seepage problems, Quart. J. Mech. Appl. Math., 74 (2021), pp. 55-81. · Zbl 1477.76053
[5] Barrenechea, G. R., Georgoulis, E., Pryer, T., and Veeser, A., A nodally bound-preserving finite element method, IMA J. Numer. Anal., (2023).
[6] Belgacem, F. B., Hild, P., and Laborde, P., Extension of the mortar finite element method to a variational inequality modeling unilateral contact, Math. Models Methods Appl. Sci., 9 (1999), pp. 287-303. · Zbl 0940.74056
[7] Belhachmi, Z. and Belgacem, F., Quadratic finite element approximation of the Signorini problem, Math. Comp., 72 (2003), pp. 83-104. · Zbl 1112.74446
[8] Belgacem, F. Ben, Numerical simulation of some variational inequalities arisen from unilateral contact problems by the finite element methods, SIAM J. Numer. Anal., 37 (2000), pp. 1198-1216, doi:10.1137/S0036142998347966. · Zbl 0974.74055
[9] Blum, H. and Suttmeier, F., An adaptive finite element discretisation for a simplified Signorini problem, Calcolo, 37 (2000), pp. 65-77. · Zbl 0954.65053
[10] Braess, D., A posteriori error estimators for obstacle problems—another look, Numer. Math., 101 (2005), pp. 415-421. · Zbl 1118.65068
[11] Brenner, S. C. and Scott, L. R., The Mathematical Theory of Finite Element Methods, Springer Science & Business Media, 2008. · Zbl 1135.65042
[12] Brezzi, F., Hager, W. W., and Raviart, P., Error estimates for the finite element solution of variational inequalities: Part I. Primal theory, Numer. Math., 28 (1977), pp. 431-443. · Zbl 0369.65030
[13] Brezzi, F., Hager, W. W., and Raviart, P., Error estimates for the finite element solution of variational inequalities: Part II. Mixed methods, Numer. Math., 31 (1978), pp. 1-16. · Zbl 0427.65077
[14] Brezzi, F. and Sacchi, G., A finite element approximation of a variational inequality related to hydraulics, Calcolo, 13 (1976), pp. 257-273. · Zbl 0353.76068
[15] Chen, Z. and Nochetto, R. H., Residual type a posteriori error estimates for elliptic obstacle problems, Numer. Math., 84 (2000), pp. 527-548. · Zbl 0943.65075
[16] Christof, C. and Haubner, C., Finite element error estimates in non-energy norms for the two-dimensional scalar Signorini problem, Numer. Math., 145 (2020), pp. 513-551. · Zbl 1453.65404
[17] Clément, P., Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér., 9 (1975), pp. 77-84. · Zbl 0368.65008
[18] DeVore, R. A., Nonlinear approximation, Acta Numer., 7 (1998), pp. 51-150. · Zbl 0931.65007
[19] Dörfler, W., A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal., 33 (1996), pp. 1106-1124, doi:10.1137/0733054. · Zbl 0854.65090
[20] Drouet, G. and Hild, P., Optimal convergence for discrete variational inequalities modelling Signorini contact in 2D and 3D without additional assumptions on the unknown contact set, SIAM J. Numer. Anal., 53 (2015), pp. 1488-1507, doi:10.1137/140980697. · Zbl 1320.65172
[21] Ern, A. and Guermond, J., Finite Elements I: Approximation and Interpolation, Springer, 2021.
[22] Falk, R. S., Error estimates for the approximation of a class of variational inequalities, Math. Comput., 28 (1974), pp. 963-971. · Zbl 0297.65061
[23] Grisvard, P., Elliptic Problems in Nonsmooth Domains, , SIAM, Philadelphia, 2011, doi:10.1137/1.9781611972030. · Zbl 1231.35002
[24] Haslinger, J., Hlaváček, I., and Nečas, J., Numerical methods for unilateral problems in solid mechanics, in Handbook of Numerical Analysis, Vol. IV, North-Holland, Amsterdam, 1996, pp. 313-485. · Zbl 0873.73079
[25] Hild, P. and Nicaise, S., A posteriori error estimations of residual type for Signorini’s problem, Numer. Math., 101 (2005), pp. 523-549. · Zbl 1084.65106
[26] Hild, P. and Renard, Y., An improved a priori error analysis for finite element approximations of Signorini’s problem, SIAM J. Numer. Anal., 50 (2012), pp. 2400-2419, doi:10.1137/110857593. · Zbl 1260.74027
[27] Hoppe, R. H. W. and Kornhuber, R., Adaptive multilevel methods for obstacle problems, SIAM J. Numer. Anal., 31 (1994), pp. 301-323, doi:10.1137/0731016. · Zbl 0806.65064
[28] Hüeber, S. and Wohlmuth, B. I., An optimal a priori error estimate for nonlinear multibody contact problems, SIAM J. Numer. Anal., 43 (2005), pp. 156-173, doi:10.1137/S0036142903436678. · Zbl 1083.74047
[29] Kinderlehrer, D. and Stampacchia, G., An Introduction to Variational Inequalities and Their Applications, SIAM, Philadelphia, 2000, doi:10.1137/1.9780898719451. · Zbl 0988.49003
[30] Krause, R., Veeser, A., and Walloth, M., An efficient and reliable residual-type a posteriori error estimator for the Signorini problem, Numer. Math., 130 (2015), pp. 151-197. · Zbl 1334.74081
[31] Lions, J.-L. and Stampacchia, G., Variational inequalities, Comm. Pure Appl. Math., 20 (1967), pp. 493-519. · Zbl 0152.34601
[32] Mosco, U., Error estimates for some variational inequalities, in Mathematical Aspects of Finite Element Methods, Springer, 1977, pp. 224-236. · Zbl 0358.35027
[33] Mosco, U. and Strang, G., One-sided approximation and variational inequalities, Bull. Amer. Math. Soc., 80 (1974), pp. 308-312. · Zbl 0278.35026
[34] Nitsche, J., \(L^{\infty}\)-convergence of finite element approximations, in Mathematical Aspects of Finite Element Methods, Springer, 1977, pp. 261-274. · Zbl 0362.65088
[35] Nochetto, R. H., Siebert, K. G., and Veeser, A., Pointwise a posteriori error control for elliptic obstacle problems, Numer. Math., 95 (2003), pp. 163-195. · Zbl 1027.65089
[36] Scarpini, F. and Vivaldi, M. A., Error estimates for the approximation of some unilateral problems, RAIRO. Anal. Numér., 11 (1977), pp. 197-208. · Zbl 0358.65087
[37] Scott, L. R. and Zhang, S., Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp., 54 (1990), pp. 483-493. · Zbl 0696.65007
[38] Steinbach, O., Wohlmuth, B., and Wunderlich, L., Trace and flux a priori error estimates in finite-element approximations of Signorni-type problems, IMA J. Numer. Anal., 36 (2015), pp. 1072-1095. · Zbl 1433.74109
[39] Strang, G., The dimension of piecewise polynomial spaces, and one-sided approximation, in Conference on the Numerical Solution of Differential Equations, , Springer, 1974, pp. 144-152. · Zbl 0279.65091
[40] Strang, G., One-sided approximation and plate bending, in Computing Methods in Applied Sciences and Engineering, Part 1, Springer-Verlag, 1974, pp. 140-155. · Zbl 0287.65062
[41] Suttmeier, F.-T., Numerical Solution of Variational Inequalities by Adaptive Finite Elements, Springer, 2008.
[42] Veeser, A., Approximating gradients with continuous piecewise polynomial functions, Found. Comput. Math., 16 (2016), pp. 723-750. · Zbl 1347.41043
[43] Veeser, A., Positivity preserving gradient approximation with linear finite elements, Comput. Methods Appl. Math., 19 (2019), pp. 295-310. · Zbl 1420.65127
[44] Walloth, M., A reliable, efficient and localized error estimator for a discontinuous Galerkin method for the Signorini problem, Appl. Numer. Math., 135 (2019), pp. 276-296. · Zbl 1406.65120
[45] Weiss, A. and Wohlmuth, B. I., A posteriori error estimator for obstacle problems, SIAM J. Sci. Comput., 32 (2010), pp. 2627-2658, doi:10.1137/090773921. · Zbl 1219.65060
[46] Zhang, C., Adaptive Finite Element Methods for Variational Inequalities: Theory and Applications in Finance, Ph.D. thesis, 2007.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.