×

On some special subspaces of a Banach space, from the perspective of best coapproximation. (English) Zbl 07891504

Let \(X\) be a real Banach space. We say that \(X\) satisfies Kadets-Klee property if whenever \(\{x_{n}\}\) is a sequence in \(X\) and \(x \in X\) such that \(x_{n} \to x\) and \(||x_{n}|| \to ||x||\), it follows that \(x_{n} \to x\). The space \(X\) is called a polyhedral Banach space if each of its finite dimensional subspace is polytope. Given \(x,y \in X\), we say that \(x\) is Birkhoff-James orthogonal to \(y\), written as \(x \perp_{B} y\) , if \(||x+\lambda y|| \geq ||x||\), for all \(\lambda \in \mathbb{R}\). For a subspace \(Y\) of \(X\) and \(x \in X\), we say that \(y_{0} \in Y\) is a best coapproximation to \(x\) out of \(Y\) if \(||y_{0}-y|| \leq ||x-y||\) for all \(y \in Y\), equivalently, if \(Y \perp_{B} (x-y_{0}) \), i.e. \(y \perp_{B} (x-y_{0})\) for all \(y \in Y\).
Let \( \epsilon \in [0,1)\). Then for \(x, y \in X\), \(x\) is said to be \(\epsilon\)-Birkhoff-James orthogonal to \(y\) written as \(x \perp_{B}^{\epsilon} y\), if \(||x+\lambda y|| \geq (1-\epsilon)||x||\), for each \(\lambda \in \mathbb{R}\). For a subspace \(Y\) of \(X\) and \(x \in X\), we say that \(y_{0} \in Y\) is an \(\epsilon\)-best coapproximation to \(x\) out of \(Y\) if \(Y \perp_{B}^{\epsilon} (x-y_{0})\). The subspace \(Y\) is said to be
(i)
anti-coproximinal if for any given \(x\in X\backslash Y\), there does not exist any best coapproximation to \(x\) out of \(Y\),
(ii)
strongly anti-coproximinal if for any given \(x\in X\backslash Y\) and for any \(\epsilon \in [0,1)\), there does not exist \(\epsilon\) best coapproximation to \(x\) out of \(Y\).

In this paper, the authors study best coapproximation problem in Banach space using Birkhoff-James orthogonal techniques. They characterize the anti-coproximinal subspaces in a smooth Banach space and using that they characterize Hilbert space among smooth Banach spaces. They also present a necessary condition for a subspace to be strongly anti-coproximinal in a reflexive Banach space, whose dual space satisfies the Kadets-Klee property. A sufficient condition for the same is obtained in any Banach space. They characterize the strongly anti-coproximinal subspaces in a finite-dimensional polyhedral Banach space and show that the strongly anti-coproximinal subspaces of such spaces possess some nice geometrical structures. The anti-coproximinal and the strongly anti-coproximinal subspaces of two distinguished polyhedral Banach spaces \(\ell_{\infty}^{n}\) and \(\ell_{1}^{n}\) have also been characterized in this paper.

MSC:

41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces)
46B20 Geometry and structure of normed linear spaces

References:

[1] Birkhoff, G., Orthogonality in linear metric spaces, Duke Math. J., 1, 169-172, 1935 · Zbl 0012.30604 · doi:10.1215/S0012-7094-35-00115-6
[2] Bruck, RE Jr, Property of fixed point sets of nonexpansive mappings in Banach spaces, Trans. Am. Math. Soc., 179, 251-262, 1973 · Zbl 0265.47043 · doi:10.1090/S0002-9947-1973-0324491-8
[3] Bruck, RE Jr, Nonexpansive projections onto subsets of Banach spaces, Pacific. J. Math., 47, 2, 341-355, 1973 · Zbl 0274.47030 · doi:10.2140/pjm.1973.47.341
[4] Chmieliński, J., On an \(\epsilon \)-Birkhoff orthogonality, J. Inequalities Pure Appl. Math., 6, 3, 2005 · Zbl 1095.46011
[5] Chmieliński, J.: Approximate Birkhoff-James Orthogonality in Normed Linear Spaces and Related Topics, Operator and norm inequalities and related topics, 303-320. Trends in Math, Birkhäuser/Springer, Cham (2022) · Zbl 1541.46006
[6] Dragomir, SS, On approximation of continuous linear functionals in normed linear spaces, An. Univ. Timişoara Ser. Ştiinţ. Mat., 29, 51-58, 1991 · Zbl 0786.46017
[7] Franchetti, C.; Furi, M., Some characteristic properties of real Hilbert spaces, Rev. Roumaine Math. Pures Appl., 17, 1045-1048, 1972 · Zbl 0245.46024
[8] Giles, JR, Strong differentiability of the norm and rotundity of the dual, J. Austral. Math. Soc. Ser. A, 26, 302-308, 1978 · Zbl 0402.46010 · doi:10.1017/S1446788700011800
[9] Ho, C.; Zimmerman, S., On the number of regions in an \(m\)-dimensional space cut by \(n\) hyperplanes, Austral. Math. Soc. Gaz., 33, 260-264, 2006 · Zbl 1179.52031
[10] James, RC, Orthogonality and linear functionals in normed linear spaces, Trans. Am. Math. Soc., 61, 265-292, 1947 · Zbl 0037.08001 · doi:10.1090/S0002-9947-1947-0021241-4
[11] James, RC, Inner products in normed linear spaces, Bull. Am. Math Soc., 53, 559-566, 1947 · Zbl 0041.43701 · doi:10.1090/S0002-9904-1947-08831-5
[12] Kamiska, A.; Lewicki, G., Contractive and optimal sets in Banach spaces, Math. Nachr., 268, 74-95, 2004 · Zbl 1057.46007 · doi:10.1002/mana.200310160
[13] Lewicki, G.; Trombetta, G., Optimal and one-complemented subspaces, Monatsh. Math., 153, 115-132, 2008 · Zbl 1147.46017 · doi:10.1007/s00605-007-0510-4
[14] Megginson, R.E.: An Introduction to Banach Space Theory, Graduate Texts in Mathematics, 183 Springer, New York (1998) · Zbl 0910.46008
[15] Narang, TD, On best coapproximation in normed linear spaces, Rocky Mountain J. Math., 22, 265-287, 1992 · Zbl 0757.41034 · doi:10.1216/rmjm/1181072810
[16] Papini, PL; Singer, I., Best coapproximation in normed linear spaces, Monatsh. Math., 88, 27-44, 1979 · Zbl 0421.41017 · doi:10.1007/BF01305855
[17] Rao, GS; Swaminathan, M., Best coapproximation and schauder bases in Banach spaces, Acta Sci. Math., 54, 339-359, 1990 · Zbl 0726.41034
[18] Rudin, W.: Functional Analysis. McGraw-Hill, Inc (1991) · Zbl 0867.46001
[19] Sain, D.; Paul, K.; Bhunia, P.; Bag, S., On the numerical index of polyhedral Banach space, Linear Algebra Appl., 577, 121-133, 2019 · Zbl 1507.47015 · doi:10.1016/j.laa.2019.04.024
[20] Sain, D.; Sohel, S.; Ghosh, S.; Paul, K., On best coapproximations in subspaces of diagonal matrices, Linear Multilinear Algebra, 71, 47-62, 2023 · Zbl 1523.46010 · doi:10.1080/03081087.2021.2017835
[21] Sain, D.; Sohel, S.; Ghosh, S.; Paul, K., On Best Coapproximation Problem in \(\ell_1^n\), Linear Multilinear Algebra, 72, 31-49, 2024 · Zbl 07790398 · doi:10.1080/03081087.2022.2153101
[22] Westphal, U., Cosuns in \(\ell_p(n)\), J. Approx. Theory, 54, 287-305, 1988 · Zbl 0658.41012 · doi:10.1016/0021-9045(88)90005-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.