×

SUPG-based stabilized finite element computations of convection-dominated 3D elliptic PDEs using shock-capturing. (English) Zbl 07890871

Summary: This study is interested in stabilized finite element computations of advection-dominated convection-diffusion-type partial differential equations. The governing equations are assumed to be defined on the 3D unit cube and stationary. Towards that end, we stabilize the standard (Bubnov-) Galerkin finite element method (GFEM), which typically suffers from yielding numerical approximations polluted with node-to-node nonphysical oscillations in convection dominance, by employing the streamline-upwind/Petrov-Galerkin (SUPG) formulation. In order to achieve better shock representations near sharp layers, the SUPG-stabilized formulation is also enhanced with a simple and residual-based shock-capturing mechanism, the so-called YZ\(\beta\) technique. Several test computations are performed to assess the efficiency and robustness of the proposed formulation. The test problems are examined under more challenging conditions than those previously studied in the literature, i.e., for flows substantially dominated by convection phenomena. The numerical results and comparisons demonstrate that the SUPG-YZ\(\beta\) combination significantly eliminates both globally spread and localized numerical instabilities. Beyond that, the proposed formulation accomplishes that by using only linear elements on relatively coarser meshes and without making use of any adaptive mesh strategies.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76R99 Diffusion and convection
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Software:

SyFi; FEniCS
Full Text: DOI

References:

[1] Elman, H.; Silvester, D.; Wathen, A., Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics, 2014, Oxford University Press · Zbl 1304.76002
[2] Morton, K. W., Numerical Solution of Convection-Diffusion Problems, 1996, CRC Press: CRC Press Boca Rato USA · Zbl 0861.65070
[3] Stynes, M., Steady-state convection-diffusion problems, Acta Numer., 14, 445-508, 2005 · Zbl 1115.65108
[4] Tezduyar, T. E.; Park, Y. J., Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations, Comput. Methods Appl. Mech. Engrg., 59, 307-325, 1986 · Zbl 0593.76096
[5] Tezduyar, T. E., Stabilized finite element formulations for incompressible flow computations, Adv. Appl. Mech., 28, 1-44, 1992 · Zbl 0747.76069
[6] Hughes, T. J.R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, 2000, Dover Publications: Dover Publications Mineola, NY · Zbl 1191.74002
[7] Brenner, S. C.; Scott, L. R., The Mathematical Theory of Finite Element Methods, 2008, Springer New York · Zbl 1135.65042
[8] Larson, M. G.; Bengzon, F., (The Finite Element Method: Theory, Implementation, and Applications. The Finite Element Method: Theory, Implementation, and Applications, Texts in Computational Science and Engineering, vol. 10, 2013, Springer Berlin Heidelberg) · Zbl 1263.65116
[9] Brooks, A. N.; Hughes, T. J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32, 199-259, 1982 · Zbl 0497.76041
[10] Brezzi, F.; Russo, A., Stabilization techniques for the finite element method, (Spigler, R., Applied and Industrial Mathematics, Venice-2, 1998, 2000, Springer Netherlands: Springer Netherlands Venice, Italy), 47-58 · Zbl 0991.65106
[11] Cengizci, S.; Uğur, Ö.; Natesan, S., A SUPG formulation augmented with shock-capturing for solving convection-dominated reaction-convection-diffusion equations, Comput. Appl. Math., 42, 5, 2023 · Zbl 1524.35053
[12] Cengizci, S.; Uğur, Ö., A stabilized FEM formulation with discontinuity-capturing for solving Burgers’-type equations at high Reynolds numbers, Appl. Math. Comput., 442, Article 127705 pp., 2023 · Zbl 1511.76051
[13] Cengizci, S.; Uğur, Ö.; Natesan, S., A stabilized finite element formulation with shock-capturing for solving advection-dominated convection-diffusion equations having time-fractional derivatives, J. Comput. Sci., 76, Article 102214 pp., 2024
[14] Hughes, T. J.R.; Brooks, A. N., A multi-dimensional upwind scheme with no crosswind diffusion, (Hughes, T. J.R., Finite Element Methods for Convection Dominated Flows. Finite Element Methods for Convection Dominated Flows, AMD, vol. 34, 1979, ASME: ASME New York), 19-35 · Zbl 0423.76067
[15] Tezduyar, T. E.; Hughes, T. J.R., Development of Time-Accurate Finite Element Techniques for First-Order Hyperbolic Systems with Particular Emphasis on the Compressible Euler EquationsNASA Technical Report NASA-CR-204772, 1982, NASA
[16] Tezduyar, T. E.; Hughes, T. J.R., Finite element formulations for convection dominated flows with particular emphasis on the compressible Euler equations, (Proceedings of AIAA 21st Aerospace Sciences Meeting. Proceedings of AIAA 21st Aerospace Sciences Meeting, Reno, Nevada. Proceedings of AIAA 21st Aerospace Sciences Meeting. Proceedings of AIAA 21st Aerospace Sciences Meeting, Reno, Nevada, AIAA Paper 83-0125, 1983)
[17] Hughes, T. J.R.; Tezduyar, T. E., Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations, Comput. Methods Appl. Mech. Engrg., 45, 217-284, 1984 · Zbl 0542.76093
[18] Barrenechea, G. R.; John, V.; Knobloch, P., Finite element methods respecting the discrete maximum principle for convection-diffusion equations, SIAM Rev., 66, 1, 3-88, 2024 · Zbl 1536.65099
[19] Hughes, T. J.R.; Franca, L. P.; Mallet, M., A new finite element formulation for computational fluid dynamics: VI. convergence analysis of the generalized SUPG formulation for linear time-dependent multi-dimensional advective-diffusive systems, Comput. Methods Appl. Mech. Engrg., 63, 97-112, 1987 · Zbl 0635.76066
[20] Le Beau, G. J.; Tezduyar, T. E., Finite element computation of compressible flows with the SUPG formulation, (Advances in Finite Element Analysis in Fluid Dynamics. Advances in Finite Element Analysis in Fluid Dynamics, FED, vol. 123, 1991, ASME: ASME New York), 21-27
[21] Hughes, T. J.R.; Franca, L. P.; Balestra, M., A new finite element formulation for computational fluid dynamics: V. circumventing the Babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. Methods Appl. Mech. Engrg., 59, 1, 85-99, 1986 · Zbl 0622.76077
[22] Tezduyar, T. E., Finite element methods for fluid dynamics with moving boundaries and interfaces, (Stein, E.; De Borst, R.; Hughes, T. J.R., Encyclopedia of Computational Mechanics. Encyclopedia of Computational Mechanics, Fluids, vol. 3, 2004, Wiley) · Zbl 1190.76001
[23] Tezduyar, T. E., Finite elements in fluids: Stabilized formulations and moving boundaries and interfaces, Comput. & Fluids, 36, 191-206, 2007 · Zbl 1177.76202
[24] Tezduyar, T. E., Computation of moving boundaries and interfaces and stabilization parameters, Internat. J. Numer. Methods Fluids, 43, 555-575, 2003 · Zbl 1032.76605
[25] Rispoli, F.; Corsini, A.; Tezduyar, T. E., Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD), Comput. & Fluids, 36, 121-126, 2007 · Zbl 1181.76098
[26] Tezduyar, T. E.; Senga, M., Stabilization and shock-capturing parameters in SUPG formulation of compressible flows, Comput. Methods Appl. Mech. Engrg., 195, 1621-1632, 2006 · Zbl 1122.76061
[27] Tezduyar, T. E.; Senga, M., SUPG finite element computation of inviscid supersonic flows with YZ \(\beta\) shock-capturing, Comput. & Fluids, 36, 147-159, 2007 · Zbl 1127.76029
[28] Tezduyar, T. E.; Senga, M.; Vicker, D., Computation of inviscid supersonic flows around cylinders and spheres with the SUPG formulation and YZ \(\beta\) shock-capturing, Comput. Mech., 38, 469-481, 2006 · Zbl 1176.76077
[29] Codoni, D.; Moutsanidis, G.; Hsu, M.-C.; Bazilevs, Y.; Johansen, C.; Korobenko, A., Stabilized methods for high-speed compressible flows: toward hypersonic simulations, Comput. Mech., 67, 3, 785-809, 2021 · Zbl 1490.76134
[30] Burman, E.; Ern, A., Stabilized Galerkin approximation of convection-diffusion-reaction equations: discrete maximum principle and convergence, Math. Comp., 74, 252, 1637-1653, 2005 · Zbl 1078.65088
[31] John, V.; Knobloch, P., On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations: Part I-A review, Comput. Methods Appl. Mech. Engrg., 196, 17, 2197-2215, 2007 · Zbl 1173.76342
[32] John, V.; Knobloch, P., On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations: Part II-Analysis for \(P_1\) and \(Q_1\) finite elements, Comput. Methods Appl. Mech. Engrg., 197, 21-24, 1997-2014, 2008 · Zbl 1194.76122
[33] John, V.; Schmeyer, E., Finite element methods for time-dependent convection-diffusion-reaction equations with small diffusion, Comput. Methods Appl. Mech. Engrg., 198, 3-4, 475-494, 2008 · Zbl 1228.76088
[34] Barrenechea, G. R.; Burman, E.; Karakatsani, F., Blending low-order stabilised finite element methods: A positivity-preserving local projection method for the convection-diffusion equation, Comput. Methods Appl. Mech. Engrg., 317, 1169-1193, 2017 · Zbl 1439.65144
[35] Saad, Y.; Schultz, M., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856-869, 1986 · Zbl 0599.65018
[36] Kalita, J. C.; Dass, A. K.; Dalal, D. C., A transformation-free HOC scheme for steady convection-diffusion on non-uniform grids, Internat. J. Numer. Methods Fluids, 44, 1, 33-53, 2004 · Zbl 1062.76035
[37] Mohamed, N.; Mohamed, S. A.; Seddek, L. F., Exponential higher-order compact scheme for 3D steady convection-diffusion problem, Appl. Math. Comput., 232, 1046-1061, 2014 · Zbl 1410.76300
[38] Deka, D.; Sen, S., Compact higher order discretization of 3D generalized convection diffusion equation with variable coefficients in nonuniform grids, Appl. Math. Comput., 413, Article 126652 pp., 2022 · Zbl 1510.65282
[39] Ma, T.; Ge, Y., A blended compact difference (BCD) method for solving 3D convection-diffusion problems with variable coefficients, Int. J. Comput. Methods, 17, 06, Article 1950022 pp., 2019 · Zbl 07205477
[40] Rispoli, F.; Saavedra, R.; Corsini, A.; Tezduyar, T. E., Computation of inviscid compressible flows with the V-SGS stabilization and YZ \(\beta\) shock-capturing, Internat. J. Numer. Methods Fluids, 54, 695-706, 2007 · Zbl 1207.76104
[41] Rispoli, F.; Saavedra, R.; Menichini, F.; Tezduyar, T. E., Computation of inviscid supersonic flows around cylinders and spheres with the V-SGS stabilization and YZ \(\beta\) shock-capturing, J. Appl. Mech., 76, Article 021209 pp., 2009
[42] Rispoli, F.; Delibra, G.; Venturini, P.; Corsini, A.; Saavedra, R.; Tezduyar, T. E., Particle tracking and particle-shock interaction in compressible-flow computations with the V-SGS stabilization and YZ \(\beta\) shock-capturing, Comput. Mech., 55, 1201-1209, 2015 · Zbl 1325.76121
[43] Bazilevs, Y.; Calo, V. M.; Tezduyar, T. E.; Hughes, T. J.R., \( Y Z \beta\) discontinuity capturing for advection-dominated processes with application to arterial drug delivery, Internat. J. Numer. Methods Fluids, 54, 6-8, 593-608, 2007 · Zbl 1207.76049
[44] Cengizci, S.; Uğur, Ö.; Natesan, S., SUPG-YZ \(\beta\) computation of chemically reactive convection-dominated nonlinear models, Int. J. Comput. Math., 100, 2, 283-303, 2023 · Zbl 1524.76209
[45] Shakib, F., Finite Element Analysis of the Compressible Euler and Navier-Stokes Equations, 1988, Department of Mechanical Engineering, Stanford University, (Ph.D. thesis)
[46] Donea, J.; Huerta, A., Finite Element Methods for Flow Problems, 2003, John Wiley & Sons: John Wiley & Sons Nashville, TN
[47] Tezduyar, T. E.; Osawa, Y., Finite element stabilization parameters computed from element matrices and vectors, Comput. Methods Appl. Mech. Engrg., 190, 411-430, 2000 · Zbl 0973.76057
[48] Abali, B. E., Computational reality: Solving nonlinear and coupled problems in continuum mechanics, (Advanced Structured Materials, vol. 55, 2016, Springer Singapore)
[49] Logg, A.; Mardal, K.-A.; Wells, G., Automated solution of differential equations by the finite element method: The FEniCS book, (Lecture Notes in Computational Science and Engineering, vol. 84, 2012, Springer-Verlag Berlin Heidelberg) · Zbl 1247.65105
[50] Alnæs, M.; Blechta, J.; Hake, J.; Johansson, A.; Kehlet, B.; Logg, A.; Richardson, C.; Ring, J.; Rognes, M. E.; Wells, G. N., The FEniCS project version 1.5, Arch. Numer. Softw., 3, 100, 9-23, 2015
[51] Langtangen, H. P.; Mardal, K.-A., Introduction to numerical methods for variational problems, (Texts in Computational Science and Engineering, vol. 21, 2019, Springer International Publishing) · Zbl 1432.49001
[52] Hu, S.; Pan, K.; Wu, X.; Ge, Y.; Li, Z., An efficient extrapolation multigrid method based on a HOC scheme on nonuniform rectilinear grids for solving 3D anisotropic convection-diffusion problems, Comput. Methods Appl. Mech. Engrg., 403, Article 115724 pp., 2023 · Zbl 1536.65160
[53] Shanab, R. A.; Seddek, L. F.; Mohamed, S. A., Non-uniform HOC scheme for the 3D convection-diffusion equation, Appl. Comput. Math., 2, 3, 64, 2013
[54] Tian, Z. F.; Dai, S. Q., High-order compact exponential finite difference methods for convection-diffusion type problems, J. Comput. Phys., 220, 2, 952-974, 2007 · Zbl 1109.65089
[55] Zhang, Z., Finite element superconvergence on Shishkin mesh for 2-D convection-diffusion problems, Math. Comp., 72, 243, 1147-1178, 2003 · Zbl 1019.65091
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.