×

Asymptotic fluctuations in supercritical Crump-Mode-Jagers processes. (English) Zbl 07889243

Summary: Consider a supercritical Crump-Mode-Jagers process \(( \mathcal{Z}_{t}^{\varphi})_{t \geq 0}\) counted with a random characteristic \(\varphi\). Nerman’s celebrated law of large numbers [O. Nerman, Z. Wahrscheinlichkeitstheor. Verw. Geb. 57, 365–395 (1981; Zbl 0451.60078)] states that, under some mild assumptions, \(e^{-\alpha t} \mathcal{Z}_{t}^{\varphi}\) converges almost surely as \(t \to \infty\) to \(aW\). Here, \(\alpha > 0\) is the Malthusian parameter, \(a\) is a constant and \(W\) is the limit of Nerman’s martingale, which is positive on the survival event. In this general situation, under additional (second moment) assumptions, we prove a central limit theorem for \((\mathcal{Z}_{t}^{\varphi})_{t \geq 0}\). More precisely, we show that there exist a constant \(k \in \mathbb{N}_{0}\) and a function \(H(t)\), a finite random linear combination of functions of the form \(t^{j} e^{\lambda t}\) with \(\alpha/2 \leq \mathrm{Re}(\lambda) < \alpha\), such that \(( \mathcal{Z}_{t}^{\varphi} - ae^{\alpha t} W - H(t)) / \sqrt{t^{k} e^{\alpha t}}\) converges in distribution to a normal random variable with random variance. This result unifies and extends various central limit theorem-type results for specific branching processes.

MSC:

60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
60F05 Central limit and other weak theorems
60G44 Martingales with continuous parameter

Citations:

Zbl 0451.60078

References:

[1] Aldous, D. J. and Eagleson, G. K. (1978). On mixing and stability of limit theorems. Ann. Probab. 6 325-331. Digital Object Identifier: 10.1214/aop/1176995577 Google Scholar: Lookup Link MathSciNet: MR0517416 · Zbl 0376.60026 · doi:10.1214/aop/1176995577
[2] ALSMEYER, G. (1991). Erneuerungstheorie: Analyse Stochastischer Regenerationsschemata. [Analysis of Stochastic Regeneration Schemes]. Teubner Skripten zur Mathematischen Stochastik. [Teubner Texts on Mathematical Stochastics]. B. G. Teubner, Stuttgart. Digital Object Identifier: 10.1007/978-3-663-09977-2 Google Scholar: Lookup Link MathSciNet: MR1119301 · Zbl 0727.60102 · doi:10.1007/978-3-663-09977-2
[3] ASMUSSEN, S. and HERING, H. (1983). Branching Processes. Progress in Probability and Statistics 3. Birkhäuser, Inc., Boston, MA. Digital Object Identifier: 10.1007/978-1-4615-8155-0 Google Scholar: Lookup Link MathSciNet: MR0701538 · Zbl 0516.60095 · doi:10.1007/978-1-4615-8155-0
[4] ATHREYA, K. B. (1969). Limit theorems for multitype continuous time Markov branching processes. I. The case of an eigenvector linear functional. Z. Wahrsch. Verw. Gebiete 12 320-332. Digital Object Identifier: 10.1007/BF00538753 Google Scholar: Lookup Link MathSciNet: MR0254927 · Zbl 0181.21101 · doi:10.1007/BF00538753
[5] ATHREYA, K. B. (1969). Limit theorems for multitype continuous time Markov branching processes. II. The case of an arbitrary linear functional. Z. Wahrsch. Verw. Gebiete 13 204-214. Digital Object Identifier: 10.1007/BF00539201 Google Scholar: Lookup Link MathSciNet: MR0254928 · Zbl 0181.21102 · doi:10.1007/BF00539201
[6] ATHREYA, K. B., GHOSH, A. P. and SETHURAMAN, S. (2008). Growth of preferential attachment random graphs via continuous-time branching processes. Proc. Indian Acad. Sci. Math. Sci. 118 473-494. Digital Object Identifier: 10.1007/s12044-008-0036-2 Google Scholar: Lookup Link MathSciNet: MR2450248 · Zbl 1153.05020 · doi:10.1007/s12044-008-0036-2
[7] ATHREYA, K. B., MCDONALD, D. and NEY, P. (1978). Limit theorems for semi-Markov processes and renewal theory for Markov chains. Ann. Probab. 6 788-797. MathSciNet: MR0503952 · Zbl 0397.60052
[8] BALL, F., GONZÁLEZ, M., MARTÍNEZ, R. and SLAVTCHOVA-BOJKOVA, M. (2014). Stochastic monotonicity and continuity properties of functions defined on Crump-Mode-Jagers branching processes, with application to vaccination in epidemic modelling. Bernoulli 20 2076-2101. Digital Object Identifier: 10.3150/13-BEJ551 Google Scholar: Lookup Link MathSciNet: MR3263099 · Zbl 1329.60299 · doi:10.3150/13-BEJ551
[9] BHAMIDI, S., STEELE, J. M. and ZAMAN, T. (2015). Twitter event networks and the superstar model. Ann. Appl. Probab. 25 2462-2502. Digital Object Identifier: 10.1214/14-AAP1053 Google Scholar: Lookup Link MathSciNet: MR3375881 · Zbl 1334.60204 · doi:10.1214/14-AAP1053
[10] BHAMIDI, S., VAN DER HOFSTAD, R. and KOMJÁTHY, J. (2014). The front of the epidemic spread and first passage percolation. J. Appl. Probab. 51A 101-121. Digital Object Identifier: 10.1239/jap/1417528470 Google Scholar: Lookup Link MathSciNet: MR3317353 · Zbl 1314.60032 · doi:10.1239/jap/1417528470
[11] BRITTON, T., LEUNG, K. Y. and TRAPMAN, P. (2019). Who is the infector? General multi-type epidemics and real-time susceptibility processes. Adv. in Appl. Probab. 51 606-631. Digital Object Identifier: 10.1017/apr.2019.25 Google Scholar: Lookup Link MathSciNet: MR3989528 · Zbl 1429.92124 · doi:10.1017/apr.2019.25
[12] BRITTON, T. and TOMBA, G. S. (2019). Estimation in emerging epidemics: Biases and remedies. J. R. Soc. Interface 16 20180670. Digital Object Identifier: 10.1098/rsif.2018.0670 Google Scholar: Lookup Link · doi:10.1098/rsif.2018.0670
[13] CHARMOY, P. H. A., CROYDON, D. A. and HAMBLY, B. M. (2017). Central limit theorems for the spectra of classes of random fractals. Trans. Amer. Math. Soc. 369 8967-9013. Digital Object Identifier: 10.1090/tran/7147 Google Scholar: Lookup Link MathSciNet: MR3710650 · Zbl 1404.28008 · doi:10.1090/tran/7147
[14] DEVROYE, L. (1987). Branching processes in the analysis of the heights of trees. Acta Inform. 24 277-298. Digital Object Identifier: 10.1007/BF00265991 Google Scholar: Lookup Link MathSciNet: MR0894557 · Zbl 0643.60065 · doi:10.1007/BF00265991
[15] DURRETT, R. (2015). Branching Process Models of Cancer. Mathematical Biosciences Institute Lecture Series. Stochastics in Biological Systems 1. Springer, Cham; MBI Mathematical Biosciences Institute, Ohio State Univ., Columbus, OH. Digital Object Identifier: 10.1007/978-3-319-16065-8 Google Scholar: Lookup Link MathSciNet: MR3363681 · Zbl 1328.92004 · doi:10.1007/978-3-319-16065-8
[16] GATZOURAS, D. (2000). On the lattice case of an almost-sure renewal theorem for branching random walks. Adv. in Appl. Probab. 32 720-737. Digital Object Identifier: 10.1239/aap/1013540241 Google Scholar: Lookup Link MathSciNet: MR1788092 · Zbl 0970.60095 · doi:10.1239/aap/1013540241
[17] HACCOU, P., JAGERS, P. and VATUTIN, V. A. (2007). Branching Processes: Variation, Growth, and Extinction of Populations. Cambridge Studies in Adaptive Dynamics 5. Cambridge Univ. Press, Cambridge; IIASA, Laxenburg. MathSciNet: MR2429372
[18] HALL, P. and HEYDE, C. C. (1980). Martingale Limit Theory and Its Application. Probability and Mathematical Statistics. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London. MathSciNet: MR0624435 · Zbl 0462.60045
[19] HENRY, B. (2017). Central limit theorem for supercritical binary homogeneous Crump-Mode-Jagers processes. ESAIM Probab. Stat. 21 113-137. Digital Object Identifier: 10.1051/ps/2016029 Google Scholar: Lookup Link MathSciNet: MR3716122 · Zbl 1394.60017 · doi:10.1051/ps/2016029
[20] HEYDE, C. C. (1970). A rate of convergence result for the super-critical Galton-Watson process. J. Appl. Probab. 7 451-454. Digital Object Identifier: 10.2307/3211980 Google Scholar: Lookup Link MathSciNet: MR0288859 · Zbl 0198.22501 · doi:10.2307/3211980
[21] HILDEBRANDT, T. H. (1940). On unconditional convergence in normed vector spaces. Bull. Amer. Math. Soc. 46 959-962. Digital Object Identifier: 10.1090/S0002-9904-1940-07344-6 Google Scholar: Lookup Link MathSciNet: MR0003448 · JFM 66.0536.02 · doi:10.1090/S0002-9904-1940-07344-6
[22] HOLMGREN, C. and JANSON, S. (2017). Fringe trees, Crump-Mode-Jagers branching processes and \(m\)-ary search trees. Probab. Surv. 14 53-154. Digital Object Identifier: 10.1214/16-PS272 Google Scholar: Lookup Link MathSciNet: MR3626585 · Zbl 1406.60120 · doi:10.1214/16-PS272
[23] IKSANOV, A. and KABLUCHKO, Z. (2018). A functional limit theorem for the profile of random recursive trees. Electron. Commun. Probab. 23 Paper No. 87, 13 pp. Digital Object Identifier: 10.1214/18-ECP188 Google Scholar: Lookup Link MathSciNet: MR3882228 · Zbl 1406.60051 · doi:10.1214/18-ECP188
[24] IKSANOV, A., KOLESKO, K. and MEINERS, M. (2021). Gaussian fluctuations and a law of the iterated logarithm for Nerman’s martingale in the supercritical general branching process. Electron. J. Probab. 26 Paper No. 160, 22 pp. Digital Object Identifier: 10.1214/21-ejp727 Google Scholar: Lookup Link MathSciNet: MR4355681 · Zbl 1483.60127 · doi:10.1214/21-ejp727
[25] Jagers, P. (1975). Branching Processes with Biological Applications. Wiley Series in Probability and Mathematical Statistics—Applied Probability and Statistics. Wiley Interscience, London-New York-Sydney. MathSciNet: MR0488341 · Zbl 0356.60039
[26] JAGERS, P. (1989). General branching processes as Markov fields. Stochastic Process. Appl. 32 183-212. Digital Object Identifier: 10.1016/0304-4149(89)90075-6 Google Scholar: Lookup Link MathSciNet: MR1014449 · Zbl 0678.92009 · doi:10.1016/0304-4149(89)90075-6
[27] JAGERS, P. and NERMAN, O. (1984). Limit theorems for sums determined by branching and other exponentially growing processes. Stochastic Process. Appl. 17 47-71. Digital Object Identifier: 10.1016/0304-4149(84)90311-9 Google Scholar: Lookup Link MathSciNet: MR0738768 · Zbl 0532.60081 · doi:10.1016/0304-4149(84)90311-9
[28] JAGERS, P. and NERMAN, O. (1984). The growth and composition of branching populations. Adv. in Appl. Probab. 16 221-259. Digital Object Identifier: 10.2307/1427068 Google Scholar: Lookup Link MathSciNet: MR0742953 · Zbl 0535.60075 · doi:10.2307/1427068
[29] Janson, S. (2004). Functional limit theorems for multitype branching processes and generalized Pólya urns. Stochastic Process. Appl. 110 177-245. Digital Object Identifier: 10.1016/j.spa.2003.12.002 Google Scholar: Lookup Link MathSciNet: MR2040966 · Zbl 1075.60109 · doi:10.1016/j.spa.2003.12.002
[30] JANSON, S. (2018). Asymptotics of fluctuations in Crump-Mode-Jagers processes: The lattice case. Adv. in Appl. Probab. 50 141-171. Digital Object Identifier: 10.1017/apr.2018.76 Google Scholar: Lookup Link MathSciNet: MR3905097 · Zbl 1431.60098 · doi:10.1017/apr.2018.76
[31] JANSON, S. and NEININGER, R. (2008). The size of random fragmentation trees. Probab. Theory Related Fields 142 399-442. Digital Object Identifier: 10.1007/s00440-007-0110-1 Google Scholar: Lookup Link MathSciNet: MR2438697 · Zbl 1158.60044 · doi:10.1007/s00440-007-0110-1
[32] JOG, V. and LOH, P.-L. (2017). Analysis of centrality in sublinear preferential attachment trees via the Crump-Mode-Jagers branching process. IEEE Trans. Netw. Sci. Eng. 4 1-12. Digital Object Identifier: 10.1109/TNSE.2016.2622923 Google Scholar: Lookup Link MathSciNet: MR3625951 · doi:10.1109/TNSE.2016.2622923
[33] Kallenberg, O. (2002). Foundations of Modern Probability, 2nd ed. Probability and Its Applications (New York). Springer, New York. Digital Object Identifier: 10.1007/978-1-4757-4015-8 Google Scholar: Lookup Link MathSciNet: MR1876169 MathSciNet: MR3656342 · doi:10.1007/978-1-4757-4015-8
[34] KIMMEL, M. and AXELROD, D. E. (2015). Branching Processes in Biology, 2nd ed. Interdisciplinary Applied Mathematics 19. Springer, New York. Digital Object Identifier: 10.1007/978-1-4939-1559-0 Google Scholar: Lookup Link MathSciNet: MR3310028 · Zbl 1312.92004 · doi:10.1007/978-1-4939-1559-0
[35] LECKEY, K., MITSCHE, D. and WORMALD, N. (2020). The height of depth-weighted random recursive trees. Random Structures Algorithms 56 851-866. Digital Object Identifier: 10.1002/rsa.20901 Google Scholar: Lookup Link MathSciNet: MR4084192 · Zbl 1442.05211 · doi:10.1002/rsa.20901
[36] MEINERS, M. (2010). An almost-sure renewal theorem for branching random walks on the line. J. Appl. Probab. 47 811-825. Digital Object Identifier: 10.1239/jap/1285335411 Google Scholar: Lookup Link MathSciNet: MR2731350 · Zbl 1252.60088 · doi:10.1239/jap/1285335411
[37] MÓRI, T. F. and ROKOB, S. (2019). Moments of general time dependent branching processes with applications. Acta Math. Hungar. 159 131-149. Digital Object Identifier: 10.1007/s10474-019-00976-9 Google Scholar: Lookup Link MathSciNet: MR4003699 · Zbl 1438.05225 · doi:10.1007/s10474-019-00976-9
[38] NERMAN, O. (1979). On the Convergence of Supercritical General Branching Processes. Ph.D. thesis, Chalmers Univ. Technology and the Univ. Göteborg.
[39] NERMAN, O. (1981). On the convergence of supercritical general (C-M-J) branching processes. Z. Wahrsch. Verw. Gebiete 57 365-395. Digital Object Identifier: 10.1007/BF00534830 Google Scholar: Lookup Link MathSciNet: MR0629532 · Zbl 0451.60078 · doi:10.1007/BF00534830
[40] OLOFSSON, P. (1998). The \(\mathit{x} \log \mathit{x}\) condition for general branching processes. J. Appl. Probab. 35 537-544. Digital Object Identifier: 10.1017/s0021900200016193 Google Scholar: Lookup Link MathSciNet: MR1659492 · Zbl 0926.60063 · doi:10.1017/s0021900200016193
[41] OLOFSSON, P. and SINDI, S. S. (2014). A Crump-Mode-Jagers branching process model of prion loss in yeast. J. Appl. Probab. 51 453-465. Digital Object Identifier: 10.1239/jap/1402578636 Google Scholar: Lookup Link MathSciNet: MR3217778 · Zbl 1325.92034 · doi:10.1239/jap/1402578636
[42] PITTEL, B. (1994). Note on the heights of random recursive trees and random \(m\)-ary search trees. Random Structures Algorithms 5 337-347. Digital Object Identifier: 10.1002/rsa.3240050207 Google Scholar: Lookup Link MathSciNet: MR1262983 · Zbl 0790.05077 · doi:10.1002/rsa.3240050207
[43] RESNICK, S. (1992). Adventures in Stochastic Processes. Birkhäuser, Inc., Boston, MA. MathSciNet: MR1181423 · Zbl 0762.60002
[44] RESNICK, S. I. (2014). A Probability Path. Modern Birkhäuser Classics. Birkhäuser/Springer, New York. Digital Object Identifier: 10.1007/978-0-8176-8409-9 Google Scholar: Lookup Link MathSciNet: MR3135152 · Zbl 1280.60001 · doi:10.1007/978-0-8176-8409-9
[45] RUDAS, A. and TÓTH, B. (2009). Random tree growth with branching processes—a survey. In Handbook of Large-Scale Random Networks. Bolyai Soc. Math. Stud. 18 171-202. Springer, Berlin. Digital Object Identifier: 10.1007/978-3-540-69395-6_4 Google Scholar: Lookup Link MathSciNet: MR2582389 · doi:10.1007/978-3-540-69395-6_4
[46] Shi, Z. (2015). Branching Random Walks. Lecture Notes in Math. 2151. Springer, Cham. Digital Object Identifier: 10.1007/978-3-319-25372-5 Google Scholar: Lookup Link MathSciNet: MR3444654 · Zbl 1348.60004 · doi:10.1007/978-3-319-25372-5
[47] TRAPMAN, P., BALL, F., DHERSIN, J.-S., TRAN, V. C., WALLINGA, J. and BRITTON, T. (2016). Inferring \(\mathit{R}_0\) in emerging epidemics—The effect of common population structure is small. J. R. Soc. Interface 13 20160288. Digital Object Identifier: 10.1098/rsif.2016.0288 Google Scholar: Lookup Link · doi:10.1098/rsif.2016.0288
[48] WIDDER, D. V. (1941). The Laplace Transform. Princeton Mathematical Series, Vol. 6. Princeton Univ. Press, Princeton, NJ. MathSciNet: MR0005923 · Zbl 0063.08245
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.