×

On some exact formulas for \(2\)-color off-diagonal Rado numbers. (English) Zbl 07888105

Summary: Let \(\varepsilon_0\), \(\varepsilon_1\) be two linear homogenous equations, each with at least three variables and coefficients not all the same sign. Define the \(2\)-color off-diagonal Rado number \(R_2(\varepsilon_0,\varepsilon_1)\) to be the smallest \(N\) such that for any 2-coloring of \([1,N]\), it must admit a monochromatic solution to \(\varepsilon_0\) of the first color or a monochromatic solution to \(\varepsilon_1\) of the second color. K. Myers and A. Robertson [Electron. J. Comb. 14, No. 1, Research Paper R53, 10 p. (2007; Zbl 1157.05336)] gave the exact \(2\)-color off-diagonal Rado numbers \(R_2(x+qy=z,x+sy=z)\). O. X. M. Yao and E. X. W. Xia [Graphs Comb. 31, No. 1, 299–307 (2015; Zbl 1308.05101)] established the formulas for \(R_2(3x+3y=z,3x+qy=z)\) and \(R_2(2x+3y=z,2x+2qy=z)\). In this paper, we determine the exact numbers \(R_2(2x+qy=2z,2x+sy=2z)\), where \(q\), \(s\) are odd integers with \(q>s\geq1\).

MSC:

05D10 Ramsey theory
Full Text: DOI

References:

[1] Schur, I. 1917. ’Über Kongruenz x … (mod. p.)’, Jahresbericht der Deutschen Mathematiker-Vereinigung, 25, pp. 114-116.
[2] Rado, R. 1933. Studien zur Kombinatorik. Mathematische Zeitschrift, 36, pp.424-480. · Zbl 0006.14603
[3] Rado, R. 1936. Note on combinatorial analysis. Proc. London Math Soc., 48, pp.122-160. · Zbl 0028.33801
[4] Dileep, A., Moondra, J. and Tripathi, A., 2022. New Proofs for the Disjunctive Rado Number of the Equations x 1-x 2= a and x 1-x 2= b. Graphs and Combinatorics, 38(2), p.38. · Zbl 1484.05140
[5] Guo, S. and Sun, Z.W., 2008. Determination of the two-color Rado number for a1x1+…+ amxm= x0. Journal of Combinatorial Theory, Series A, 115(2), pp.345-353. · Zbl 1133.05097
[6] Gupta, S., Thulasi Rangan, J. and Tripathi, A., 2015. The two-colour Rado number for the equation ax+ by=(a+ b) z. Annals of Combinatorics, 19, pp.269-291. · Zbl 1317.05116
[7] Johnson, B. and Schaal, D., 2005. Disjunctive Rado numbers. Journal of Combinatorial Theory, Series A, 112(2), pp.263-276. · Zbl 1078.05083
[8] Jones, S. and Schaal, D., 2004. Two-color Rado numbers for x+ y+ c= kz. Discrete mathematics, 289(1-3), pp.63-69. · Zbl 1056.05138
[9] Kosek, W. and Schaal, D., 2001. Rado numbers for the equation \(\sum_{i=1}^{m-1}x_i+c=x_m\) for negative values of \(c\). Advances in Applied Mathematics, 27(4), pp.805-815. · Zbl 0996.05116
[10] Landman, B.M. and Robertson, A., 2014. Ramsey Theory on the integers (Vol. 73). American Mathematical Soc.. · Zbl 1307.05218
[11] Robertson, A. and Myers, K., 2008. Some two color, four variable Rado numbers. Advances in Applied Mathematics, 41(2), pp.214-226. · Zbl 1178.05095
[12] Robertson, A., 2000. Difference Ramsey numbers and Issai numbers. Advances in Applied Mathematics, 25(2), pp.153-162. · Zbl 0957.05076
[13] Robertson, A. and Schaal, D., 2001. Off-diagonal generalized Schur numbers. Advances in Applied Mathematics, 26(3), pp.252-257. · Zbl 0973.11024
[14] Mayers, K. and Robertson, A. 2007. Two color off-diagonal Rado-type numbers. The Electronic Journal of Combinatorics 13, R53. · Zbl 1157.05336
[15] Yao, O.X. and Xia, E.X., 2015. Two formulas of 2-color off-diagonal Rado numbers. Graphs and Combinatorics, 31, pp.299-307. · Zbl 1308.05101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.