×

Learning quantum symmetries with interactive quantum-classical variational algorithms. (English) Zbl 07888022

Summary: A symmetry of a state \(|\psi\rangle\) is a unitary operator of which \(|\psi\rangle\) is an eigenvector. When \(|\psi\rangle\) is an unknown state supplied by a black-box oracle, the state’s symmetries provide key physical insight into the quantum system; symmetries also boost many crucial quantum learning techniques. In this paper, we develop a variational hybrid quantum-classical learning scheme to systematically probe for symmetries of \(|\psi\rangle\) with no a priori assumptions about the state. This procedure can be used to learn various symmetries at the same time. In order to avoid re-learning already known symmetries, we introduce an interactive protocol with a classical deep neural net. The classical net thereby regularizes against repetitive findings and allows our algorithm to terminate empirically with all possible symmetries found. An iteration of the learning algorithm can be implemented efficiently with non-local SWAP gates; we also give a less efficient algorithm with only local operations, which may be more appropriate for current noisy quantum devices. We simulate our algorithm on representative families of states, including cluster states and ground states of Rydberg and Ising Hamiltonians. We also find that the numerical query complexity scales well for up to moderate system sizes.
{© 2024 IOP Publishing Ltd}

Software:

Bloqade.jl

References:

[1] Mototake, Y-I, Interpretable conservation law estimation by deriving the symmetries of dynamics from trained deep neural networks, Phys. Rev. E, 103, 2021 · doi:10.1103/PhysRevE.103.033303
[2] Wetzel, S. J.; Melko, R. G.; Scott, J.; Panju, M.; Ganesh, V., Discovering symmetry invariants and conserved quantities by interpreting Siamese neural networks, Phys. Rev. Res., 2, 2020 · doi:10.1103/PhysRevResearch.2.033499
[3] Ha, S.; Jeong, H., Discovering conservation laws from trajectories via machine learning, 2021
[4] Liu, Z.; Madhavan, V.; Tegmark, M., Machine learning conservation laws from differential equations, Phys. Rev. E, 106, 2022 · doi:10.1103/PhysRevE.106.045307
[5] Krippendorf, S.; Syvaeri, M., Detecting symmetries with neural networks, Mach. Learn.: Sci. Technol., 2, 2020 · doi:10.1088/2632-2153/abbd2d
[6] Broecker, P.; Carrasquilla, J.; Melko, R. G.; Trebst, S., Machine learning quantum phases of matter beyond the fermion sign problem, Sci. Rep., 7, 1, 2017 · doi:10.1038/s41598-017-09098-0
[7] Dong, X-Y; Pollmann, F.; Zhang, X-F, Machine learning of quantum phase transitions, Phys. Rev. B, 99, 2019 · doi:10.1103/PhysRevB.99.121104
[8] Carleo, G.; Troyer, M., Solving the quantum many-body problem with artificial neural networks, Science, 355, 602, 2017 · Zbl 1404.81313 · doi:10.1126/science.aag2302
[9] Zhang, Y.; Ginsparg, P.; Kim, E-A, Interpreting machine learning of topological quantum phase transitions, Phys. Rev. Res., 2, 2020 · doi:10.1103/PhysRevResearch.2.023283
[10] Deng, D-L; Li, X.; Sarma, S. D., Machine learning topological states, Phys. Rev. B, 96, 2017 · doi:10.1103/PhysRevB.96.195145
[11] Käming, N.; Dawid, A.; Kottmann, K.; Lewenstein, M.; Sengstock, K.; Dauphin, A.; Weitenberg, C., Unsupervised machine learning of topological phase transitions from experimental data, Mach. Learn.: Sci. Technol., 2, 2021 · doi:10.1088/2632-2153/abffe7
[12] LaBorde, M. L.; Wilde, M. M., Quantum algorithms for testing Hamiltonian symmetry, Phys. Rev. Lett., 129, 2022 · doi:10.1103/PhysRevLett.129.160503
[13] LaBorde, M. L.; Rethinasamy, S.; Wilde, M. M., Testing symmetry on quantum computers, Quantum, 7, 1120, 2023 · doi:10.22331/q-2023-09-25-1120
[14] Meyer, J. J.; Mularski, M.; Gil-Fuster, E.; Mele, A. A.; Arzani, F.; Wilms, A.; Eisert, J., Exploiting symmetry in variational quantum machine learning, PRX Quantum, 4, 2023 · doi:10.1103/PRXQuantum.4.010328
[15] Larocca, M.; Sauvage, F.; Sbahi, F. M.; Verdon, G.; Coles, P. J.; Cerezo, M., Group-invariant quantum machine learning, PRX Quantum, 3, 2022 · doi:10.1103/PRXQuantum.3.030341
[16] Zheng, H.; Li, Z.; Liu, J.; Strelchuk, S.; Kondor, R., Speeding up learning quantum states through group equivariant convolutional quantum ansätze, PRX Quantum, 4, 2023 · doi:10.1103/PRXQuantum.4.020327
[17] Zhou, Z.; Du, Y.; Tian, X.; Tao, D., QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum machines, Phys. Rev. Appl., 19, 2023 · doi:10.1103/PhysRevApplied.19.024027
[18] Luo, D.; Chen, Z.; Hu, K.; Zhao, Z.; Hur, V. M.; Clark, B. K., Gauge-invariant and anyonic-symmetric autoregressive neural network for quantum lattice models, Phys. Rev. Res., 5, 2023 · doi:10.1103/PhysRevResearch.5.013216
[19] Luo, D.; Carleo, G.; Clark, B. K.; Stokes, J., Gauge equivariant neural networks for quantum lattice gauge theories, Phys. Rev. Lett., 127, 2021 · doi:10.1103/PhysRevLett.127.276402
[20] Paris, M.; Rehacek, J., Quantum State Estimation, vol 649, 2004, Springer Science & Business Media · Zbl 1084.81004
[21] Torlai, G., Integrating neural networks with a quantum simulator for state reconstruction, Phys. Rev. Lett., 123, 2019 · doi:10.1103/PhysRevLett.123.230504
[22] Torlai, G.; Mazzola, G.; Carrasquilla, J.; Troyer, M.; Melko, R.; Carleo, G., Neural-network quantum state tomography, Nat. Phys., 14, 447, 2018 · doi:10.1038/s41567-018-0048-5
[23] Carrasquilla, J.; Torlai, G.; Melko, R. G.; Aolita, L., Reconstructing quantum states with generative models, Nat. Mach. Intell., 1, 155, 2019 · doi:10.1038/s42256-019-0028-1
[24] Wang, J.; Han, Z-Y; Wang, S-B; Li, Z.; Mu, L-Z; Fan, H.; Wang, L., Scalable quantum tomography with fidelity estimation, Phys. Rev. A, 101, 2020 · doi:10.1103/PhysRevA.101.032321
[25] Carrasquilla, J.; Torlai, G., How to use neural networks to investigate quantum many-body physics, PRX Quantum, 2, 2021 · doi:10.1103/PRXQuantum.2.040201
[26] Cha, P.; Ginsparg, P.; Wu, F.; Carrasquilla, J.; McMahon, P. L.; Kim, E-A, Attention-based quantum tomography, Mach. Learn.: Sci. Technol., 3, 01LT01, 2022 · doi:10.1088/2632-2153/ac362b
[27] Huang, H-Y; Kueng, R.; Torlai, G.; Albert, V. V.; Preskill, J., Provably efficient machine learning for quantum many-body problems, Science, 377, eabk3333, 2022 · Zbl 1524.81003 · doi:10.1126/science.abk3333
[28] Gomez, A. M.; Yelin, S. F.; Najafi, K., Reconstructing quantum states using basis-enhanced Born machines, 2022
[29] We restrict ourselves to pure states \(|\psi\rangle\) and system-isolated operators (i.e. acting only on \(|\psi\rangle )\) for simplicity. However, The algorithm generalizes readily to a density matrix formalism.
[30] Cerezo, M.; Sharma, K.; Arrasmith, A.; Coles, P. J., Variational quantum state eigensolver, npj Quantum Inf., 8, 113, 2022 · doi:10.1038/s41534-022-00611-6
[31] Buhrman, H.; Cleve, R.; Watrous, J.; De Wolf, R., Quantum fingerprinting, Phys. Rev. Lett., 87, 2001 · doi:10.1103/PhysRevLett.87.167902
[32] Shende, V. V.; Markov, I. L.; Bullock, S. S., Minimal universal two-qubit controlled-not-based circuits, Phys. Rev. A, 69, 2004 · doi:10.1103/PhysRevA.69.062321
[33] Nelder, J. A.; Mead, R., A simplex method for function minimization, Comput. J., 7, 308, 1965 · Zbl 0229.65053 · doi:10.1093/comjnl/7.4.308
[34] Cerezo, M., Variational quantum algorithms, Nat. Rev. Phys., 3, 625, 2021 · doi:10.1038/s42254-021-00348-9
[35] Cerezo, M.; Sone, A.; Volkoff, T.; Cincio, L.; Coles, P. J., Cost function dependent barren plateaus in shallow parametrized quantum circuits, Nat. Commun., 12, 1791, 2021 · doi:10.1038/s41467-021-21728-w
[36] Agarap, A. F., Deep learning using rectified linear units (ReLU), 2018
[37] Grossmann, C.; Roos, H-G; Stynes, M., Numerical Treatment of Partial Differential Equations, vol 154, 2007, Springer · Zbl 1180.65147
[38] Bluvstein, D.; Levine, H.; Semeghini, G.; Wang, T. T.; Ebadi, S.; Kalinowski, M.; Keesling, A.; Maskara, N.; Pichler, H.; Greiner, M., A quantum processor based on coherent transport of entangled atom arrays, 2021
[39] Gottesman, D.; Chuang, I. L., Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations, Nature, 402, 390, 1999 · doi:10.1038/46503
[40] Omran, A., Generation and manipulation of Schrödinger cat states in Rydberg atom arrays, Science, 365, 570, 2019 · doi:10.1126/science.aax9743
[41] Song, C., Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits, Science, 365, 574-7, 2019 · doi:10.1126/science.aay0600
[42] Wei, K. X.; Lauer, I.; Srinivasan, S.; Sundaresan, N.; McClure, D. T.; Toyli, D.; McKay, D. C.; Gambetta, J. M.; Sheldon, S., Verifying multipartite entangled Greenberger-Horne-Zeilinger states via multiple quantum coherences, Phys. Rev. A, 101, 2020 · doi:10.1103/PhysRevA.101.032343
[43] Zhao, Z.; Chen, Y-A; Zhang, A-N; Yang, T.; Briegel, H. J.; Pan, J-W, Experimental demonstration of five-photon entanglement and open-destination teleportation, Nature, 430, 54, 2004 · doi:10.1038/nature02643
[44] Pezzè, L.; Smerzi, A.; Oberthaler, M. K.; Schmied, R.; Treutlein, P., Quantum metrology with nonclassical states of atomic ensembles, Rev. Mod. Phys., 90, 2018 · doi:10.1103/RevModPhys.90.035005
[45] M S Aet al.2021Qiskit: an open-source framework for quantum computing
[46] Ebadi, S.; Keesling, A.; Cain, M.; Wang, T. T.; Levine, H.; Bluvstein, D.; Semeghini, G.; Omran, A.; Liu, J-G; Samajdar, R., Quantum optimization of maximum independent set using Rydberg atom arrays, Science, 376, eabo6587, 2022 · doi:10.1126/science.abo6587
[47] Bernien, H., Probing many-body dynamics on a 51-atom quantum simulator, Nature, 551, 579, 2017 · doi:10.1038/nature24622
[48] Ebadi, S., Quantum phases of matter on a 256-atom programmable quantum simulator, Nature, 595, 227, 2021 · doi:10.1038/s41586-021-03582-4
[49] Levine, H.; Keesling, A.; Semeghini, G.; Omran, A.; Wang, T. T.; Ebadi, S.; Bernien, H.; Greiner, M.; Vuletić, V.; Pichler, H., Parallel implementation of high-fidelity multiqubit gates with neutral atoms, Phys. Rev. Lett., 123, 2019 · doi:10.1103/PhysRevLett.123.170503
[50] Keesling, A., Quantum Kibble-Zurek mechanism and critical dynamics on a programmable Rydberg simulator, Nature, 568, 207, 2019 · doi:10.1038/s41586-019-1070-1
[51] Pichler, H.; Wang, S-T; Zhou, L.; Choi, S.; Lukin, M. D., Quantum optimization for maximum independent set using Rydberg atom arrays, 2018
[52] This definition, while useful in our analysis, is imprecise in general. A more accurate formulation of ordered phases is through the construction of an order parameter that takes on a certain range of values in each phase, with sharp changes at the boundary. While the order parameter unambiguously defines the ordered phase for any system size, the closeness-to-a product-state property does not hold for large systems because of quantum fluctuations. As each qubit in the chain has a small error, the total error from a product state scales exponentially with system size, and has been observed in experiment by []. We study this example as a simple system—small enough to be classically simulated—with a physically meaningful and important symmetry.
[53] Samajdar, R.; Ho, W. W.; Pichler, H.; Lukin, M. D.; Sachdev, S., Complex density wave orders and quantum phase transitions in a model of square-lattice Rydberg atom arrays, Phys. Rev. Lett., 124, 2020 · doi:10.1103/PhysRevLett.124.103601
[54] 2023Bloqade.jl: Package for the quantum computation and quantum simulation based on the neutral-atom architecture(https://github.com/QuEraComputing/Bloqade.jl)
[55] Our algorithm found these symmetries and optimized to losses of 0.062 for \(\mathbb{Z}_2\), 0.0428 for \(\mathbb{Z}_3\), and 1.416 for disordered, over 2000 iterations. Further details are in the appendix.
[56] Patti, T. L.; Shehab, O.; Najafi, K.; Yelin, S. F., Markov chain Monte Carlo enhanced variational quantum algorithms, Quantum Sci. Technol., 8, 2022 · doi:10.1088/2058-9565/aca821
[57] Bittel, L.; Kliesch, M., Training variational quantum algorithms is NP-hard, Phys. Rev. Lett., 127, 2021 · doi:10.1103/PhysRevLett.127.120502
[58] Aaronson, S., Shadow tomography of quantum states, SIAM J. Comput., 49, STOC18, 2019 · doi:10.1145/3188745.3188802
[59] Semeghini, G., Probing topological spin liquids on a programmable quantum simulator, Science, 374, 1242, 2021 · doi:10.1126/science.abi8794
[60] Lu, J. Z.; Bravo, R. A.; Hou, K.; Dagnew, G.; Yelin, S.; Najafi, K., HQSLN
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.