×

Zilber’s restricted trichotomy in characteristic zero. (English) Zbl 07887949

Summary: We prove the characteristic zero case of Zilber’s Restricted Trichotomy Conjecture. That is, we show that if \(\mathcal{M}\) is any non-locally modular strongly minimal structure interpreted in an algebraically closed field \(K\) of characteristic zero, then \(\mathcal{M}\) itself interprets \(K\); in particular, any non-1-based structure interpreted in \(K\) is mutually interpretable with \(K\). Notably, we treat both the ‘one-dimensional’ and ‘higher-dimensional’ cases of the conjecture, introducing new tools to resolve the higher-dimensional case and then using the same tools to recover the previously known one-dimensional case.

MSC:

03C45 Classification theory, stability, and related concepts in model theory
14A99 Foundations of algebraic geometry

References:

[1] Artin, E., Geometric algebra, x+214 pp., 1957, Interscience Publishers, Inc., New York-London · Zbl 0077.02101
[2] Bouscaren, Elisabeth, The model theory of groups. The group configuration-after E. Hrushovski, Notre Dame Math. Lectures, 199-209, 1985-1987, Univ. Notre Dame Press, Notre Dame, IN
[3] Buechler, Steven, The geometry of weakly minimal types, J. Symbolic Logic, 1044-1053 (1986), 1985 · Zbl 0621.03019 · doi:10.2307/2273989
[4] Buechler, Steven, One theorem of Zil\cprime ber’s on strongly minimal sets, J. Symbolic Logic, 1054-1061 (1986), 1985 · Zbl 0621.03018 · doi:10.2307/2273990
[5] Buechler, Steven, Locally modular theories of finite rank, Ann. Pure Appl. Logic, 83-94, 1986 · Zbl 0627.03016 · doi:10.1016/0168-0072(86)90038-2
[6] Benjamin Castle and Assaf Hasson, Very ampleness in strongly minimal sets, to appear in Model Theory, 2022. 2212.03774 [math.LO].
[7] Chang, C. C., Model theory, Studies in Logic and the Foundations of Mathematics, xvi+650 pp., 1990, North-Holland Publishing Co., Amsterdam · Zbl 0697.03022
[8] Eleftheriou, Pantelis E., Strongly minimal groups in o-minimal structures, J. Eur. Math. Soc. (JEMS), 3351-3418, 2021 · Zbl 1468.14102 · doi:10.4171/jems/1095
[9] Grauert, Hans, Coherent analytic sheaves, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], xviii+249 pp., 1984, Springer-Verlag, Berlin · Zbl 0537.32001 · doi:10.1007/978-3-642-69582-7
[10] Grothendieck, A., \'{E}l\'{e}ments de g\'{e}om\'{e}trie alg\'{e}brique. IV. \'{E}tude locale des sch\'{e}mas et des morphismes de sch\'{e}mas IV, Inst. Hautes \'{E}tudes Sci. Publ. Math., 361 pp., 1967 · Zbl 0153.22301
[11] Hasson, Assaf, Strongly minimal expansions of \((\mathbb{C},+)\) definable in o-minimal fields, Proc. Lond. Math. Soc. (3), 117-154, 2008 · Zbl 1153.03011 · doi:10.1112/plms/pdm052
[12] Assaf Hasson and Dmitry Sustretov, Incidence systems on cartesian powers of algebraic curves, 2021. 1702.05554 [math.LO].
[13] Hrushovski, Ehud, Classification theory. Locally modular regular types, Lecture Notes in Math., 132-164, 1985, Springer, Berlin · Zbl 0643.03024 · doi:10.1007/BFb0082236
[14] Hrushovski, Ehud, Strongly minimal expansions of algebraically closed fields, Israel J. Math., 129-151, 1992 · Zbl 0773.12005 · doi:10.1007/BF02808211
[15] Hrushovski, Ehud, A new strongly minimal set, Ann. Pure Appl. Logic, 147-166, 1993 · Zbl 0804.03020 · doi:10.1016/0168-0072(93)90171-9
[16] Hrushovski, Ehud, The Mordell-Lang conjecture for function fields, J. Amer. Math. Soc., 667-690, 1996 · Zbl 0864.03026 · doi:10.1090/S0894-0347-96-00202-0
[17] Hrushovski, Ehud, The Manin-Mumford conjecture and the model theory of difference fields, Ann. Pure Appl. Logic, 43-115, 2001 · Zbl 0987.03036 · doi:10.1016/S0168-0072(01)00096-3
[18] Hrushovski, Ehud, Zariski geometries, J. Amer. Math. Soc., 1-56, 1996 · Zbl 0843.03020 · doi:10.1090/S0894-0347-96-00180-4
[19] Ehud Hrushovski and Zeljko Sokolovic, Minimal subsets of differentially closed fields, Preprint, 1994.
[20] Hrushovski, U., Logic colloquium ’85. Weakly normal groups, Stud. Logic Found. Math., 233-244, 1985, North-Holland, Amsterdam · Zbl 0636.03028 · doi:10.1016/S0049-237X(09)70556-7
[21] J\'anos Koll\'ar, Max Lieblich, Martin Olsson, and William Sawin, The Zariski topology, linear systems, and algebraic varieties, manuscript, 2021.
[22] Macintyre, Angus, On \(\omega_1\)-categorical theories of fields, Fund. Math., 1-25. (errata insert), 1971 · Zbl 0228.02033 · doi:10.4064/fm-71-1-1-25
[23] Marker, D., Reducts of \((\mathbf{C},+,\cdot )\) which contain \(+\), J. Symbolic Logic, 1243-1251, 1990 · Zbl 0721.03023 · doi:10.2307/2274485
[24] Marker, David, Model theory, Graduate Texts in Mathematics, viii+342 pp., 2002, Springer-Verlag, New York · Zbl 1003.03034
[25] Martin, Gary A., Definability in reducts of algebraically closed fields, J. Symbolic Logic, 188-199, 1988 · Zbl 0653.03021 · doi:10.2307/2274437
[26] Mumford, David, The red book of varieties and schemes, Lecture Notes in Mathematics, vi+309 pp., 1988, Springer-Verlag, Berlin · Zbl 0658.14001 · doi:10.1007/978-3-662-21581-4
[27] Peterzil, Ya’acov, Expansions of algebraically closed fields in o-minimal structures, Selecta Math. (N.S.), 409-445, 2001 · Zbl 1010.03027 · doi:10.1007/PL00001405
[28] Pillay, Anand, Geometric stability theory, Oxford Logic Guides, x+361 pp., 1996, The Clarendon Press, Oxford University Press, New York · Zbl 0871.03023
[29] Pillay, Anand, Jet spaces of varieties over differential and difference fields, Selecta Math. (N.S.), 579-599, 2003 · Zbl 1060.12003 · doi:10.1007/s00029-003-0339-1
[30] Poizat, Bruno, Une th\'{e}orie de Galois imaginaire, J. Symbolic Logic, 1151-1170 (1984), 1983 · Zbl 0537.03023 · doi:10.2307/2273680
[31] Poizat, Bruno, Stable groups, Mathematical Surveys and Monographs, xiv+129 pp., 2001, American Mathematical Society, Providence, RI · Zbl 0969.03047 · doi:10.1090/surv/087
[32] Rabinovich, E. D., Definability of a field in sufficiently rich incidence systems, QMW Maths Notes, xvi+97 pp., 1993, Queen Mary and Westfield College, School of Mathematical Sciences, London
[33] Eugenia Rabinovich and Boris Zilber, Additive reducts of algebraically closed fields, Manuscript, 1988.
[34] Scanlon, Thomas, Local Andr\'{e}-Oort conjecture for the universal abelian variety, Invent. Math., 191-211, 2006 · Zbl 1086.14020 · doi:10.1007/s00222-005-0460-1
[35] The Stacks Project Authors, Stacks Project, 2018, https://stacks.math.columbia.edu.
[36] Tarski, Alfred, A decision method for elementary algebra and geometry, iii+63 pp., 1951, University of California Press, Berkeley-Los Angeles, Calif. · Zbl 0044.25102
[37] Ravi Vakil, The rising sea: foundations of algebraic geometry, 2017, Online notes.
[38] Zariski, Oscar, On the purity of the branch locus of algebraic functions, Proc. Nat. Acad. Sci. U.S.A., 791-796, 1958 · Zbl 0087.35703 · doi:10.1073/pnas.44.8.791
[39] Zil\cprime ber, B. I., Proceedings of the International Congress of Mathematicians, Vol. 1, 2. The structure of models of uncountably categorical theories, 359-368, 1983, PWN, Warsaw · Zbl 0595.03028
[40] Zilber, Boris, A curve and its abstract Jacobian, Int. Math. Res. Not. IMRN, 1425-1439, 2014 · Zbl 1304.14040 · doi:10.1093/imrn/rns262
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.