×

Variable exponent \(p(x)\)-Laplacian-like Dirichlet problem with convection. (English) Zbl 07887452

Summary: In this paper, we investigate a Dirichlet problems with \(p(x)\)-Laplacian-like operators of the form \[ \begin{cases} -\operatorname{div}\left(|\nabla u|^{p(x)-2}\nabla u + \frac{|\nabla u|^{2p(x)-2}\nabla u}{\sqrt{1+|\nabla u|^{2p(x)}}}\right) = w|u|^{\varsigma(x) - 2}u + \varpi f(x, u, \nabla u) & \text{in }\Omega\\ u = 0 & \text{on }\partial\Omega \end{cases} \] in the setting of the variable-exponent Sobolev spaces \(W_0^{1, p(x)}(\Omega)\), where \(\Omega\) is a smooth bounded domain in \(\mathbb{R}^N\) (\(N \geq 2\)), \(\omega\) and \(\varpi\) are two real parameters and \(p(\cdot), \varsigma(\cdot)\in C_+(\overline{\Omega})\). Under the suitable nonstandard growth conditions on \(f\) and using the topological degree for a class of demicontinuous operators of generalized (\(S_+\)) type, we establish the existence of “a weak solution” for the above problem.

MSC:

35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35J25 Boundary value problems for second-order elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence

References:

[1] E. Acerbi, G. Mingione, Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164 (2002), no. 3, 213-259. · Zbl 1038.76058
[2] E. Acerbi, G. Mingione, Gradient estimates for the p(x)-Laplacean system. J. Reine Angew. Math. 584 (2005), 117-148. · Zbl 1093.76003
[3] C. Allalou, M. El Ouaarabi, S. Melliani, Existence and uniqueness results for a class of p(x)-Kirchhoff-type problems with convection term and Neumann boundary data. J. Elliptic Parabol. Equ. 8 (2022), no. 1, 617-633. · Zbl 1491.35203
[4] J. Berkovits, Extension of the Leray-Schauder degree for abstract Hammerstein type mappings. J. Differential Equations 234 (2007), no. 1, 289-310. · Zbl 1114.47049
[5] M. El Ouaarabi, A. Abbassi, C. Allalou, Existence result for a Dirichlet problem governed by nonlinear degenerate elliptic equation in weighted Sobolev spaces. J. Elliptic Parabol. Equ. 7 (2021), no. 1, 221-242. · Zbl 1472.35184
[6] M. El Ouaarabi, A. Abbassi, C. Allalou, Existence result for a general nonlinear degenerate ellipticproblems with measure datum in weighted Sobolev spaces, Int. J. Optim. Appl. 1 (2021), no. 2, 1-9.
[7] M. El Ouaarabi, A. Abbassi, C. Allalou, Existence and uniqueness of weak solution in weighted Sobolev spaces for a class of nonlinear degenerate elliptic problems with measure data. Int. J. of Nonlinear Anal. Appl. 13 (2022), no. 1, 2635-2653.
[8] M. El Ouaarabi, C. Allalou, S. Melliani, Existence of weak solution for a class of p(x)-Laplacian problems depending on three real parameters with Dirichlet condition. Boletín de la Sociedad Matemática Mexicana 28 (2022), no. 2, 1-16. · Zbl 1489.35144
[9] X. L. Fan, D. Zhao, On the Spaces L p(x) (Ω) and W m,p(x) (Ω). J. Math. Anal. Appl. 263 (2001), no. 2, 424-446. · Zbl 1028.46041
[10] I. S. Kim, S. J. Hong, A topological degree for operators of generalized (s + ) type. Fixed Point Theory Appl. 2015, 2015:194, 16 pp. · Zbl 1361.47018
[11] V. D. Rȃdulescu, D. D. Repoveš, Partial Differential Equations with Variable Exponents. Variational methods and qualitative analysis. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2015. · Zbl 1343.35003
[12] M. A. Ragusa, A. Tachikawa, On continuity of minimizers for certain quadratic growth functionals. J. Math. Soc. Japan 57 (2005), no. 3, 691-700. · Zbl 1192.49043
[13] M. A. Ragusa, A. Tachikawa, Regularity of minimizers of some variational integrals with discontinuity. Z. Anal. Anwend. 27 (2008), no. 4, 469-482. · Zbl 1153.49036
[14] K. R. Rajagopal, M. Ruzicka, Mathematical modeling of electrorheological materials. Continuum mechanics and thermodynamics 13 (2001), no. 1, 59-78. · Zbl 0971.76100
[15] M. M. Rodrigues, Multiplicity of solutions on a nonlinear eigenvalue problem for p(x)-Laplacian-like operators. Mediterr. J. Math. 9 (2012), no. 1, 211-223. · Zbl 1245.35061
[16] M. Ruzicka, Electrorheological Fuids: Modeling and Mathematical Theory. Springer Science & Business Media, 2000. · Zbl 0962.76001
[17] E. Zeidler, Nonlinear Functional Analysis and Its Applications. II/B. Nonlinear monotone operators. Translated from the German by the author and Leo F. Boron. Springer-Verlag, New York, 1990. · Zbl 0684.47029
[18] D. Zhao, W. J. Qiang, X. L. Fan, On generalizerd Orlicz spaces L p(x) (Ω). J. Gansu Sci. 9 (1997), no. 2, 1-7.
[19] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 4, 675-710, 877. (. · Zbl 0599.49031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.