×

Nonlinear cascade control based on an integral separated disturbance observer of proportional poppet valve. (English) Zbl 07885572

Summary: The large flow rate proportional poppet valve (PPV) finds widespread use in high-power hydraulic systems. However, the indispensable dead-zone nonlinearity that guarantees the safe shut-off of the PPV will cause a tracking lag when a command goes outside the dead-zone. The lag should be properly solved in a controller, which is a highlight of this study. Simultaneously, achieving high tracking precision in a PPV is necessary to meet the demands of advanced hydraulic systems. In this study, a practical nonlinear controller based on an integral separated disturbance observer is proposed to improve the performance of a PPV. In particular, the lag could be alleviated and the high tracking precision achieved simultaneously by enabling or disabling a disturbance observer in the proposed controller. A separation coefficient is proposed for the disturbance observer to detach the integral action from the controller and avert the deep input saturation of the pilot stage. Additionally, the command filtering technology is applied to the nonlinear controller to improve its interference resisting capacity in the industrial environment. The stability and effectiveness of the proposed controller are proved in theory and verified by experiments.
© 2024 John Wiley & Sons Ltd.

MSC:

93C10 Nonlinear systems in control theory
93B53 Observers
Full Text: DOI

References:

[1] FuL, WeiJ, QiuM. Dynamic characteristics of large flow rating electrohydraulic proportional cartridge valve. Chin J Mech Eng. 2008;06:57‐62.
[2] ChenG, ZhangY, JiL, HouR, ChangJ. Study on new control system of electro‐hydraulic proportional valve‐control fast forging press. 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA). IEEE; 2016:251‐255.
[3] LiuW, WeiJ, FangJ, LiS. Hydraulic‐feedback proportional valve design for construction machinery. Proc Inst Mech Eng C J Mech Eng Sci. 2015;229(17):3162‐3178. doi:10.1177/0954406214568822
[4] XuB, SuQ, ZhangJ, LuZ. A dead‐band model and its online detection for the pilot stage of a two‐stage directional flow control valve. Proc Inst Mech Eng C J Mech Eng Sci. 2015;230(4):639‐654. doi:10.1177/0954406215578158
[5] XuB, SuQ, ZhangJ, LuZ. Analysis and compensation for the cascade dead‐zones in the proportional control valve. ISA Trans. 2017;66(Supplement C):393‐403. doi:10.1016/j.isatra.2016.10.012
[6] LiuG, DaleyS. Optimal‐tuning nonlinear PID control of hydraulic systems. Control Eng Pract. 2000;8(9):1045‐1053.
[7] LiuS, YaoB. Characterization and attenuation of sandwiched deadband problem using describing function analysis and application to electrohydraulic systems controlled by closed‐center valves. J Dyn Syst Meas Control. 2009;131(3):031002.
[8] NaJ, RenX, HerrmannG, QiaoZ. Adaptive neural dynamic surface control for servo systems with unknown dead‐zone. Control Eng Pract. 2011;19(11):1328‐1343.
[9] ZhaoX, ShiP, ZhengX, ZhangL. Adaptive tracking control for switched stochastic nonlinear systems with unknown actuator dead‐zone. Automatica. 2015;60:193‐200. · Zbl 1331.93194
[10] ZhaoL, ChengH, ZhangJ, XiaY. Adaptive control for a motion mechanism with pneumatic artificial muscles subject to dead‐zones. Mech Syst Signal Process. 2021;148:107155. doi:10.1016/j.ymssp.2020.107155
[11] MohantyA, YaoB. Integrated direct/indirect adaptive robust control of hydraulic manipulators with valve deadband. IEEE/ASME Trans Mechatron. 2011;16(4):707‐715. doi:10.1109/TMECH.2010.2051037
[12] ZhouZ, TanY, XieY, DongR. State estimation of a compound non‐smooth sandwich system with backlash and dead zone. Mech Syst Signal Process. 2017;83:439‐449. doi:10.1016/j.ymssp.2016.06.023
[13] HuaC, ChenJ, LiY, LiL. Adaptive prescribed performance control of half‐car active suspension system with unknown dead‐zone input. Mech Syst Signal Process. 2018;111:135‐148. doi:10.1016/j.ymssp.2018.03.048
[14] BuF, YaoB. Nonlinear adaptive robust control of hydraulic actuators regulated by proportional directional control valves with deadband and nonlinear flow gains. Proceedings of the 2000 American Control Conference. Vol 6. IEEE; 2000:4129‐4133.
[15] TawareA, TaoG. An adaptive dead‐zone inverse controller for systems with sandwiched dead‐zones. Int J Control. 2003;76(8):755‐769. · Zbl 1043.93059
[16] TaoG, KokotovicPV. Adaptive Control of Systems with Actuator and Sensor Nonlinearities. John Wiley & Sons, Inc.; 1996. · Zbl 0953.93002
[17] TaoG, KokotovicPV. Adaptive control of plants with unknown dead‐zones. IEEE Trans Autom Control. 1994;39(1):59‐68. · Zbl 0796.93070
[18] WigrenT, NordsjoAE. Compensation of the RLS algorithm for output nonlinearities. IEEE Trans Autom Control. 1999;44(10):1913‐1918. · Zbl 0956.93068
[19] CorradiniML, OrlandoG. Robust practical stabilization of nonlinear uncertain plants with input and output nonsmooth nonlinearities. IEEE Trans Control Syst Technol. 2003;11(2):196‐203.
[20] MaL, HuoX, ZhaoX, NiuB, ZongG. Adaptive neural control for switched nonlinear systems with unknown backlash‐like hysteresis and output dead‐zone. Neurocomputing. 2019;357:203‐214. doi:10.1016/j.neucom.2019.04.049
[21] WangF, LiuZ, LaiG. Fuzzy adaptive control of nonlinear uncertain plants with unknown dead zone output. Fuzzy Sets Syst. 2015;263:27‐48. doi:10.1016/j.fss.2014.04.024 · Zbl 1361.93029
[22] DongG, CaoL, YaoD, LiH, LuR. Adaptive attitude control for multi‐MUAV systems with output dead‐zone and actuator fault. IEEE/CAA J Automat Sinica. 2021;8(9):1567‐1575. doi:10.1109/JAS.2020.1003605
[23] YanH, LiY. Adaptive NN prescribed performance control for nonlinear systems with output dead zone. Neural Comput & Applic. 2017;28(1):145‐153.
[24] LiuZ, LaiG, ZhangY, ChenCLP. Adaptive fuzzy tracking control of nonlinear time‐delay systems with dead‐zone output mechanism based on a novel smooth model. IEEE Trans Fuzzy Syst. 2015;23(6):1998‐2011. doi:10.1109/TFUZZ.2015.2396075
[25] OpdenboschP, SadeghN. Control of electro‐hydraulic poppet valves via online learning and estimation. Fluid Power Systems and Technology of ASME 2005 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers; 2005:57‐62.
[26] BuF, YaoB. Performance improvement of proportional directional control valves: methods and experiments. ASME International Mechanical Engineering Congress and Exposition. Vol 26645. American Society of Mechanical Engineers; 2000:297‐304.
[27] YaoB, JiangC. Advanced motion control: from classical PID to nonlinear adaptive robust control. 2010 11th IEEE International Workshop on Advanced Motion Control (AMC). IEEE; 2010:815‐829.
[28] XiongY, WeiJ, FengR. Adaptive robust control of a high‐response dual proportional solenoid valve with flow force compensation. Proc Inst Mech Eng I J Syst Control Eng. 2015;229(1):3‐26.
[29] WangH, WangX, HuangJ, QuanL. Performance improvement of a two‐stage proportional valve with internal hydraulic position feedback. J Dyn Syst Meas Control. 2021;143(7):071005. doi:10.1115/1.4049793
[30] SongL, BinY. Programmable valves: a solution to bypass deadband problem of electro‐hydraulic systems. Proceedings of the 2004 American Control Conference. Vol 5. IEEE; 2004:4438‐4443.
[31] DongW, FarrellJA, PolycarpouMM, DjapicV, SharmaM. Command filtered adaptive backstepping. IEEE Trans Control Syst Technol. 2012;20(3):566‐580. doi:10.1109/TCST.2011.2121907
[32] YaoJ, DengW. Active disturbance rejection adaptive control of hydraulic servo systems. IEEE Trans Ind Electron. 2017;64(10):8023‐8032. doi:10.1109/TIE.2017.2694382
[33] GuoK, WeiJ, QyT. Disturbance observer based position tracking of electro‐hydraulic actuator. J Cent South Univ. 2015;22(6):2158‐2165.
[34] NaJ, LiY, HuangY, GaoG, ChenQ. Output feedback control of uncertain hydraulic servo systems. IEEE Trans Ind Electron. 2020;67(1):490‐500. doi:10.1109/TIE.2019.2897545
[35] WangS, TaoL, ChenQ, NaJ, RenX. USDE‐based sliding mode control for servo mechanisms with unknown system dynamics. IEEE/ASME Trans Mechatron. 2020;25(2):1056‐1066. doi:10.1109/TMECH.2020.2971541
[36] YaoJ, JiaoZ, MaD, YanL. High‐accuracy tracking control of hydraulic rotary actuators with modeling uncertainties. IEEE/ASME Trans Mechatron. 2014;19(2):633‐641. doi:10.1109/TMECH.2013.2252360
[37] DengW, YaoJ. Extended‐state‐observer‐based adaptive control of electrohydraulic servomechanisms without velocity measurement. IEEE/ASME Trans Mechatron. 2020;25(3):1151‐1161. doi:10.1109/TMECH.2019.2959297
[38] YuJ, ShiP, DongW, YuH. Observer and command‐filter‐based adaptive fuzzy output feedback control of uncertain nonlinear systems. IEEE Trans Ind Electron. 2015;62(9):5962‐5970. doi:10.1109/TIE.2015.2418317
[39] SunW, PanH, GaoH. Filter‐based adaptive vibration control for active vehicle suspensions with electrohydraulic actuators. IEEE Trans Veh Technol. 2016;65(6):4619‐4626. doi:10.1109/TVT.2015.2437455
[40] KimW, ShinD, WonD, ChungCC. Disturbance‐observer‐based position tracking controller in the presence of biased sinusoidal disturbance for electrohydraulic actuators. IEEE Trans Control Syst Technol. 2013;21(6):2290‐2298.
[41] TaloleSE, KolheJP, PhadkeSB. Extended‐state‐observer‐based control of flexible‐joint system with experimental validation. IEEE Trans Ind Electron. 2010;57(4):1411‐1419. doi:10.1109/TIE.2009.2029528
[42] MerrittHE. Hydraulic control systems. John Wiley & Sons, Inc.; 1967.
[43] ZhangJ, LiuX, XiaY, ZuoZ, WangY. Disturbance observer‐based integral sliding‐mode control for systems with mismatched disturbances. IEEE Trans Ind Electron. 2016;63(11):7040‐7048. doi:10.1109/TIE.2016.2583999
[44] LiS, YangJ, ChenWH, ChenX. Generalized extended state observer based control for systems with mismatched uncertainties. IEEE Trans Ind Electron. 2012;59(12):4792‐4802. doi:10.1109/TIE.2011.2182011
[45] HanJ. Active Disturbance Rejection Control Technique‐the Technique for Estimating and Compensating the Uncertainties. National Defense Industry Press; 2008.
[46] ZhengQ, GaolLQ, GaoZ. On stability analysis of active disturbance rejection control for nonlinear time‐varying plants with unknown dynamics. 2007 46th IEEE Conference on Decision and Control. IEEE; 2007:3501‐3506.
[47] GuoK, WeiJ, FangJ, FengR, WangX. Position tracking control of electro‐hydraulic single‐rod actuator based on an extended disturbance observer. Mechatronics. 2015;27:47‐56.
[48] ShiW, WeiJ, FangJ, LiM. Nonlinear cascade control of high‐response proportional solenoid valve based on an extended disturbance observer. Proc Inst Mech Eng I J Syst Control Eng. 2018;233(8):921‐934. doi:10.1177/0959651818807518
[49] Rexroth. Directional high‐response cartridge valve, pilot‐operated. RE 29135Bosch Rexroth AG. 2020.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.