×

Finite/fixed-time cluster synchronization for directed and multiplex coupled dynamic networks. (English) Zbl 07885292

Summary: This article deals with finite/fixed-time cluster synchronization (FnTCS/FdTCS) issue for directed and multiplex coupled dynamic networks (MCDNs). Finite/fixed-time synchronization of multiplex networks has become a popular research topic, which indicates that, state information is utilized for synchronization, and the settling time depends on original condition for a range of finite time, while the time is bounded with arbitrary original value for fixed-time one. Through constructing appropriate feedback control protocol, FnTCS and FdTCS matters for MCDNs are settled under re-arranging variables’ order technique. The present model contains the case that outer matrices (OMs) can be directed, with competitive elements, and not even connected, while previous and related researches assumed that OMs were undirected, cooperative and connected, so existing results can be improved for more general and broader regulations. This strategy above is presented to solve directed CDNs with multiweights from angle of inner and outer matrices, and we prove that if the weighted group of added OMs for each dimension is strongly connected, then cluster synchronization rules are established in finite/fixed time. Moreover, we also earn finite/fixed-time synchronization criteria when the cluster is single. In addition, the issue of FnTCS/FdTCS is developed for directed and multiplex coupled reaction-diffusion networks (MCRDNs) as an application. The validity of these gained results is verified by simulated examples.

MSC:

93D40 Finite-time stability
93B70 Networked control
93B52 Feedback control
93C20 Control/observation systems governed by partial differential equations
Full Text: DOI

References:

[1] An, X. L.; Zhang, L.; Li, Y. Z.; Zhang, J. G., Synchronization analysis of complex networks with multi-weights and its application in public traffic network, Physica A, 412, 149-156, 2014 · Zbl 1395.90068
[2] Bayani, A.; Jafari, S.; Azarnoush, H.; Nazarimehr, F.; Boccaletti, S.; Perc, M., Explosive synchronization dependence on initial conditions: the minimal Kuramoto model, Chaos Solitons Fractals, 169, Article 113243 pp., 2023
[3] Bhat, S. P.; Bernstein, D. S., Finite-time stability of continuous autonomous systems, SIAM J. Control Optim., 38, 3, 751-766, 2000 · Zbl 0945.34039
[4] Cao, Y. T.; Zhao, L. H.; Zhong, Q. S.; Wen, S. P.; Shi, K. B.; Xiao, J. Y.; Huang, T. W., Adaptive fixed-time output synchronization for complex dynamical networks with multi-weights, Neural Netw., 163, 28-39, 2023 · Zbl 1525.93159
[5] Chen, T. P.; Liu, X. W.; Lu, W. L., Pinning complex networks by a single controller, IEEE Trans. Circuits Syst. I, Regul. Pap., 54, 6, 1317-1326, 2007 · Zbl 1374.93297
[6] Guo, W. L.; Wang, L.; Shi, L. L.; Sun, W.; Jahanshahi, H., Predefined-time stability for a class of dynamical systems and its application on the consensus control for nonlinear multi-agent systems, Inf. Sci., 626, 180-203, 2023 · Zbl 1536.93757
[7] Haimo, V. T., Finite time controllers, SIAM J. Control Optim., 24, 6, 760-770, 1986 · Zbl 0603.93005
[8] Hardy, G. H.; Littlewood, J. E.; Pólya, G., Inequalities, 1952, Cambridge Univ. Press: Cambridge Univ. Press Cambridge, U.K. · Zbl 0047.05302
[9] He, Q. S.; Ma, Y. C., Quantized adaptive pinning control for fixed/preassigned-time cluster synchronization of multi-weighted complex networks with stochastic disturbances, Nonlinear Anal. Hybrid Syst., 44, Article 101157 pp., 2022 · Zbl 1485.93287
[10] Hu, C.; He, H. B.; Jiang, H. J., Fixed/preassigned-time synchronization of complex networks via improving fixed-time stability, IEEE Trans. Cybern., 51, 6, 2882-2892, 2021
[11] Ji, P.; Ye, J. C.; Mu, Y.; Lin, W.; Tian, Y.; Hens, C.; Perc, M.; Tang, Y.; Sun, J.; Kurths, J., Signal propagation in complex networks, Phys. Rep., 1017, 1-96, 2023
[12] Li, Y. X.; Deng, F. Q., Finite time stability analysis of the coupled stochastic reaction-diffusion systems on networks, Commun. Nonlinear Sci. Numer. Simul., 131, Article 107882 pp., 2024 · Zbl 1533.93691
[13] Li, J. Y.; Huang, Y. C.; Rao, H. X.; Xu, Y.; Lu, R. Q., Finite-time cluster synchronization for complex dynamical networks under FDI attack: a periodic control approach, Neural Netw., 165, 228-237, 2023 · Zbl 1525.93377
[14] Li, N.; Wu, X. Q.; Feng, J. W.; Lu, J. H., Fixed-time synchronization of complex dynamical networks: a novel and economical mechanism, IEEE Trans. Cybern., 52, 6, 4430-4440, 2022
[15] Li, Y. Y.; Zhang, J.; Lu, J. Q.; Lu, J. G., Finite-time synchronization of complex networks with partial communication channels failure, Inf. Sci., 634, 539-549, 2023 · Zbl 1536.93762
[16] Lin, S. R.; Huang, Y. L.; Ren, S. Y., Event-triggered passivity and synchronization of delayed multiple-weighted coupled reaction-diffusion neural networks with non-identical nodes, Neural Netw., 121, 259-275, 2020 · Zbl 1443.93080
[17] Lin, S. R.; Liu, X. W., Robust passivity and control for directed and multiweighted coupled dynamical networks, IEEE Trans. Neural Netw. Learn. Syst., 34, 12, 10458-10472, 2023
[18] Lin, S. R.; Liu, X. W., Synchronization and control for directly coupled reaction-diffusion neural networks with multiple weights and hybrid coupling, Neurocomputing, 487, 144-156, 2022
[19] Lin, S. R.; Liu, X. W., Synchronization and control for directly coupled reaction-diffusion neural networks with multiweights and hybrid coupling, Chaos Solitons Fractals, 175, Article 113944 pp., 2023
[20] Lin, S. R.; Liu, X. W., Synchronization for multiweighted and directly coupled reaction-diffusion neural networks with hybrid coupling via boundary control, Inf. Sci., 607, 620-637, 2022 · Zbl 1533.93746
[21] Liu, X. W., Synchronization and control for multiweighted and directed complex networks, IEEE Trans. Neural Netw. Learn. Syst., 34, 6, 3226-3233, 2023
[22] Liu, X. W.; Chen, T. P., Finite-time and fixed-time cluster synchronization with or without pinning control, IEEE Trans. Cybern., 48, 1, 240-252, 2018
[23] Liu, B.; Hu, M. J.; Huang, J. J.; Chen, Y.; Su, H. S., Controllability of multi-agent systems with cartesian product networks, IEEE Trans. Circuits Syst. I, Regul. Pap., 71, 2, 838-850, 2024
[24] Lu, W. L.; Chen, T. P., New approach to synchronization analysis of linearly coupled ordinary differential systems, Physica D, 213, 2, 214-230, 2006 · Zbl 1105.34031
[25] Polyakov, A., Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Trans. Autom. Control, 57, 8, 2106-2110, 2012 · Zbl 1369.93128
[26] Qiu, Q.; Su, H. S., Finite-time output synchronization for output-coupled reaction-diffusion neural networks with directed topology, IEEE Trans. Netw. Sci. Eng., 9, 3, 1386-1394, 2022
[27] Ren, Y. X.; Lu, J. Q.; Liu, Y.; Shi, K. B., Cluster synchronization of Boolean networks under probabilistic function perturbation, IEEE Trans. Circuits Syst. II, Express Briefs, 69, 2, 504-508, 2022
[28] Rigatos, G. G., Nonlinear Control and Filtering Using Differential Flatness Approaches: Applications to Electromechanical Systems, 2015, Springer: Springer Heidelberg · Zbl 1352.93008
[29] Rigatos, G. G.; Siano, P.; Loia, V.; Ghosh, T., Stabilization of a stock-loan valuation PDE process using differential flatness theory, Asian J. Control, 22, 2229-2241, 2020 · Zbl 07879335
[30] Shangguan, X. C.; He, Y.; Zhang, C. K.; Jin, L.; Jiang, L.; Wu, M.; Spencer, J. W., Switching system-based load frequency control for multi-area power system resilient to denial-of-service attacks, Control Eng. Pract., 107, Article 104678 pp., 2021
[31] Shangguan, X. C.; He, Y.; Zhang, C. K.; Yao, W.; Zhao, Y. F.; Jiang, L.; Wu, M., Resilient load frequency control of power systems to compensate random time delays and time-delay attacks, IEEE Trans. Ind. Electron., 70, 5, 5115-5128, 2023
[32] Shen, Y. J.; Xia, X. H., Semi-global finite-time observers for nonlinear systems, Automatica, 44, 12, 3152-3156, 2008 · Zbl 1153.93332
[33] Tang, R. Q.; Yuan, S.; Yang, X. S.; Shi, P.; Xiang, Z. R., Finite-time synchronization of intermittently controlled reaction-diffusion systems with delays: a weighted LKF method, Commun. Nonlinear Sci. Numer. Simul., 127, Article 107571 pp., 2023 · Zbl 1527.35160
[34] Shi, J. Y.; Zhou, P. P.; Cai, S. M.; Jia, Q., On finite-/fixed-time synchronization of multi-weighted dynamical networks: a new unified control approach, Neural Comput. Appl., 35, 8, 5769-5790, 2023
[35] Thompson, C.; Pearson, E.; Comrie, L.; Hartley, H., Tables of percentage points of the incomplete beta-function, Biometrika, 32, 2, 151-181, 1941 · Zbl 0060.29512
[36] Ullah, S.; Khan, Q.; Zaidi, M. M.; Hua, L. G., Neuro-adaptive non-singular terminal sliding mode control for distributed fixed-time synchronization of higher-order uncertain multi-agent nonlinear systems, Inf. Sci., 659, Article 120087 pp., 2024 · Zbl 1534.93069
[37] Wan, Y.; Zhou, L. Q., Fixed-time synchronization of discontinuous proportional delay inertial neural networks with uncertain parameters, Inf. Sci., 678, Article 120931 pp., 2024 · Zbl 07880018
[38] Wang, J. Q.; Liu, X. W., Cluster synchronization for multi-weighted and directed complex networks via pinning control, IEEE Trans. Circuits Syst. II, Express Briefs, 69, 3, 1347-1351, 2022
[39] Wang, J. Q.; Liu, X. W., Cluster synchronization for multiweighted and directed fractional-order networks with cooperative-competitive interactions, IEEE Trans. Circuits Syst. II, Express Briefs, 69, 11, 4359-4363, 2022
[40] Wang, Z.; Zhai, L. X.; Liu, S. X., Controllability analysis of continuous-time affine nonlinear systems with time-delay, (2020 Chinese Automation Congress, Shanghai, China, 2020), 3451-3454
[41] Wang, J. L.; Zhao, L. H.; Wu, H. N.; Huang, T. W., Finite-time passivity and synchronization of multi-weighted complex dynamical networks under PD control, IEEE Trans. Neural Netw. Learn. Syst., 35, 1, 507-518, 2024
[42] Wu, X. F.; Bao, H. B.; Cao, J. D., Fixed-time synchronization of multiplex networks by sliding mode control, J. Franklin Inst., 360, 8, 5504-5523, 2023 · Zbl 1516.93227
[43] Xia, W. G.; Cao, M., Cluster synchronization and controllability of complex multi-agent networks, (2012 IEEE Int. Symp. Circuits Syst. Seoul, Korea, 2012), 165-168
[44] Xu, L. L.; Liu, X. W., Prescribed-time synchronization of multiweighted and directed complex networks, IEEE Trans. Autom. Control, 68, 12, 8208-8215, 2023 · Zbl 07811056
[45] Xu, Y. H.; Gao, Q. W.; Xie, C. R.; Zhang, X.; Wu, X. Q., Finite-time synchronization of complex networks with privacy-preserving, IEEE Trans. Circuits Syst. II, Express Briefs, 70, 11, 4103-4107, 2023
[46] Xu, Y. H.; Wu, X. Q.; Wan, X. X.; Xie, C. R., Finite/fixed-time synchronization of multi-layer networks based on energy consumption estimation, IEEE Trans. Circuits Syst. I, Regul. Pap., 68, 10, 4278-4286, 2021
[47] Yang, X. S.; Li, X. D.; Lu, J. Q.; Cheng, Z. S., Synchronization of time-delayed complex networks with switching topology via hybrid actuator fault and impulsive effects control, IEEE Trans. Cybern., 50, 9, 4043-4052, 2020
[48] Zhang, H. G.; Chen, X. L.; Peng, Y.; Kou, G.; Wang, R. J., The interaction of multiple information on multiplex social networks, Inf. Sci., 605, 366-380, 2022
[49] Zhong, S. Y.; Zhang, W. H.; Jiang, X. S., Finite-time stability and asynchronous \(\mathcal{H}_\infty\) control for highly nonlinear hybrid stochastic systems, Inf. Sci., 637, Article 118985 pp., 2023 · Zbl 1533.93710
[50] Zhuang, J. S.; Cao, J. D.; Tang, L. K.; Xia, Y. H.; Perc, M., Synchronization analysis for stochastic delayed multilayer network with additive couplings, IEEE Trans. Syst. Man Cybern. Syst., 50, 11, 4807-4816, 2020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.