×

Amplitude equations for wave bifurcations in reaction-diffusion systems. (English) Zbl 07885184

Summary: A wave bifurcation is the counterpart to a Turing instability in reaction-diffusion systems, but where the critical wavenumber corresponds to a pure imaginary pair rather than a zero temporal eigenvalue. Such bifurcations require at least three components and give rise to patterns that are periodic in both space and time. Depending on boundary conditions, these patterns can comprise either rotating or standing waves. Restricting to systems in one spatial dimension, complete formulae are derived for the evaluation of the coefficients of the weakly nonlinear normal form of the bifurcation up to order five, including those that determine the criticality of both rotating and standing waves. The formulae apply to arbitrary \(n\)-component systems \((n\geqslant 3)\) and their evaluation is implemented in software which is made available as supplementary material. The theory is illustrated on two different versions of three-component reaction-diffusion models of excitable media that were previously shown to feature super- and subcritical wave instabilities and on a five-component model of two-layer chemical reaction. In each case, two-parameter bifurcation diagrams are produced to illustrate the connection between complex dispersion relations and different types of Hopf, Turing, and wave bifurcations, including the existence of several codimension-two bifurcations.
{© 2024 The Author(s). Published by IOP Publishing Ltd and the London Mathematical Society}

MSC:

35K57 Reaction-diffusion equations
35B32 Bifurcations in context of PDEs
35B36 Pattern formations in context of PDEs
35K40 Second-order parabolic systems
37L10 Normal forms, center manifold theory, bifurcation theory for infinite-dimensional dissipative dynamical systems

References:

[1] Ahamadi, M.; Gervais, J-J, Symbolic-numerical methods for the computation of normal forms of PDEs, J. Comput. Appl. Math., 158, 443-72, 2003 · Zbl 1029.65055 · doi:10.1016/S0377-0427(03)00482-5
[2] Al Saadi, FChampneys, A RVerscheuren, N2024Snakes, ladders and breathers; organization of localized patterns in reaction-diffusion systemssubmitted
[3] Breña-Medina, V.; Champneys, A. R., Subcritical turing bifurcation and the morphogenesis of localized patterns, Phys. Rev. E, 90, 2014 · doi:10.1103/PhysRevE.90.032923
[4] Dangelmayr, G.; Knobloch, E., The Takens-Bogdanov bifurcation with o(2) symmetry, Phil. Trans. R. Soc. A, 322, 243-79, 1987 · Zbl 0635.58032 · doi:10.1098/rsta.1987.0050
[5] Dellnitz, M.; Golubitsky, M.; Hohmann, A.; Stewart, I., Spirals in scalar reaction-diffusion equations, Int. J. Bifurcation Chaos, 5, 1487-501, 1995 · Zbl 0886.58102 · doi:10.1142/S0218127495001149
[6] Dessup, T.; Tuckerman, L. S.; Wesfreid, J. E.; Barkley, D.; Willis, A. P., Self-sustaining process in Taylor-Couette flow, Phys. Rev. Fluids, 3, 2018 · doi:10.1103/PhysRevFluids.3.123902
[7] Doedel, E JOldeman, B2019Auto 07p: continuation and bifurcation software for ordinary differential equations(available at: https://github.com/auto-07p/auto-07p)
[8] Elphick, C.; Tirapegui, E.; Brachet, M. E.; Coullet, P.; Iooss, G., A simple global characterization for normal forms of singular vector fields, Physica D, 29, 95-127, 1987 · Zbl 0633.58020 · doi:10.1016/0167-2789(87)90049-2
[9] Golubitsky, M.; Stewart, I.; Schaeffer, D. G., Singularity and Groups in Bifurcation Theory vol II, 1988, Springer · Zbl 0691.58003
[10] Knoblch, E., Oscillatory convection in binary mixtures, Phys. Rev. A, 34, 1538-49, 1986 · doi:10.1103/PhysRevA.34.1538
[11] Knobloch, E.; Uecker, H.; Yochelis, A., Origin of jumping oscillons in an excitable reaction-diffusion system, Phys. Rev. E, 104, 2021 · doi:10.1103/PhysRevE.104.L062201
[12] Krause, A. L.; Gaffney, E. A.; Maini, P. K.; Klika, V., Introduction to ‘Recent progress and open frontiers in Turing’s theory of morphogenesis’, Phil. Trans. R. Soc. A, 379, 2021 · doi:10.1098/rsta.2020.0280
[13] Kuznetsov, Y. A., Elements of Applied Bifurcation Theory, 2004, Springer · Zbl 1082.37002
[14] Meron, E., Nonlinear Physics of Ecosystems, 2015, CRC Press · Zbl 1316.92002
[15] Murray, J. D., Mathematical Biology II: Spatial Models and Biomedical Applications, 2002, Springer
[16] Nikolaev, E. V.; Biktashev, V. N.; Holden, A. V., On bifurcation of spiral waves in the plane, Int. J. Bifurcation Chaos, 9, 1501-16, 1999 · Zbl 1192.35018 · doi:10.1142/S021812749900105X
[17] Rucklidge, A. M.; Knobloch, E., Chaos in the Takens-Bogdanov bifurcation with o(2) symmetry, Dyn. Syst., 32, 354-73, 2017 · Zbl 1457.37069 · doi:10.1080/14689367.2016.1239699
[18] Scheel, A., Bifurcation to spiral waves in reaction-diffusion systems, SIAM J. Math. Anal., 29, 1399-418, 1998 · Zbl 0928.35017 · doi:10.1137/S0036141097318948
[19] Uecker, H.; Wetzel, D.; Rademacher, J. D M., pde2path-a Matlab package for continuation and bifurcation in 2D elliptic systems, Num. Math.: Theory Methods Appl., 7, 58-106, 2014 · Zbl 1313.65311 · doi:10.1017/S1004897900000295
[20] van Gils, S. A.; Mallet-Paret, J., Hopf bifurcation and symmetry: travelling and standing waves on the circle, Proc. R. Soc. Edinburgh A, 104, 279-307, 1986 · Zbl 0629.35012 · doi:10.1017/S0308210500019223
[21] Vanag, V. K.; Epstein, I. R., Subcritical wave instability in reaction-diffusion systems, J. Chem. Phys., 121, 890-4, 2004 · doi:10.1063/1.1760742
[22] Villar-Sepúlveda, E.; Champneys, A. R., Computation of Turing bifurcation normal form for n-component reaction-diffusion systems, ACM Transactions on Mathematical Software, 49, 1-24, 2023 · Zbl 07912533 · doi:10.1145/3625560
[23] Villar-Sepúlveda, E.; Champneys, A. R., General conditions for Turing and wave bifurcations in n-dimensional sytstems, J. Math. Biol., 86, 39, 2023 · Zbl 1509.35133 · doi:10.1007/s00285-023-01870-3
[24] Villar-Sepúlveda, ECriticality of a Turing-wave bifurcation(available at: https://github.com/edgardeitor/Criticality-of-Turing-wave)
[25] Yang, L.; Epstein, I. R., Oscillatory turing patterns in reaction-diffusion systems with two coupled layers, Phys. Rev. Lett., 90, 2003 · doi:10.1103/PhysRevLett.90.178303
[26] Yang, L.; Zhabotinsky, A. M.; Epstein, I. R., Jumping solitary waves in an autonomous reaction-diffusion system with subcritical wave instability, Phys. Chem. Chem. Phys., 8, 4647-51, 2006 · doi:10.1039/B609214D
[27] Yochelis, A.; Knobloch, E.; Xie, Y.; Qu, Z.; Garfinkel, A., Generation of finite wave trains in excitable media, Europhys. Lett., 83, 2008 · doi:10.1209/0295-5075/83/64005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.