×

Towards galaxy cluster models in aether-scalar-tensor theory: isothermal spheres and curiosities. (English) Zbl 07882398

Summary: The Aether-Scalar-Tensor (AeST) theory is an extension of General Relativity (GR) which can support Modified Newtonian Dynamics (MOND) behaviour in its static weak-field limit, and cosmological evolution resembling \(\Lambda\) CDM. We consider static spherically symmetric weak-field solutions in this theory and show that the resulting equations can be reduced to a single equation for the gravitational potential. The reduced equation has apparent isolated singularities at the zeros of the derivative of the potential and we show how these are removed by evolving, instead, the canonical momentum of the corresponding Hamiltonian system that we find. We construct solutions in three cases: (i) in vacuum outside a bounded spherical object, (ii) within an extended prescribed source, and (iii) for an isothermal gas in hydrostatic equilibrium, serving as a simplified model for galaxy clusters. We show that the oscillatory regime that follows the Newtonian and MOND regimes, obtained in previous works in the vacuum case, also persists for isothermal spheres, and we show that the gas density profiles in AeST can become more compressed than their Newtonian or MOND counterparts. We construct the Radial Acceleration Relation (RAR) in AeST for isothermal spheres and find that it can display a peak, an enhancement with respect to the MOND RAR, at an acceleration range determined by the value of the AeST weak-field mass parameter, the mass of the system and the boundary value of the gravitational potential. For lower accelerations, the AeST RAR drops below the MOND expectation, as if there is a negative mass density. Similar observational features of the galaxy cluster RAR have been reported. This illustrates the potential of AeST to address the shortcomings of MOND in galaxy clusters, but a full quantitative comparison with observations will require going beyond the isothermal case.
{© 2024 The Author(s)}

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83F05 Relativistic cosmology
83C56 Dark matter and dark energy

Software:

SciPy

References:

[1] Rubin, Vera C.; Ford, W. Kent Jr., Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions, Astrophys. J., 159, 379-403, 1970 · doi:10.1086/150317
[2] Rubin, V. C.; Thonnard, N.; Ford, W. K. Jr., Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885 /R = 122 kpc/, Astrophys. J., 238, 471, 1980 · doi:10.1086/158003
[3] Bosma, A., 21-cm line studies of spiral galaxies. 2. The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types., Astron. J., 86, 1825, 1981 · doi:10.1086/113063
[4] Zwicky, F., Die Rotverschiebung von extragalaktischen Nebeln, Helv. Phys. Acta, 6, 110-127, 1933 · JFM 59.1632.03 · doi:10.1007/s10714-008-0707-4
[5] White, Simon D. M.; Navarro, Julio F.; Evrard, August E.; Frenk, Carlos S., The Baryon content of galaxy clusters: a Challenge to cosmological orthodoxy, Nature, 366, 429-433, 1993 · doi:10.1038/366429a0
[6] Myers, S. T.; Baker, J. E.; Readhead, A. C. S.; Leitch, E. M.; Herbig, T., Measurements of the Sunyaev-Zeldovich effect in the nearby clusters A478, A2142 and A2256, Astrophys. J., 485, 1, 1997 · doi:10.1086/304389
[7] Grego, Laura; Carlstrom, John E.; Reese, Erik D.; Holder, Gilbert P.; Holzapfel, William L.; Joy, Marshall K.; Mohr, Joseph J.; Patel, Sandeep, Galaxy cluster gas mass fractions from Sunyaev-Zel’dovich effect measurements: constraints on Omega(M), Astrophys. J., 552, 2, 2001 · doi:10.1086/320443
[8] Grossman, Scott A.; Narayan, Ramesh, Gravitationally lensed images in Abell 370, The Astrophysical Journal, 344, 637, 1989 · doi:10.1086/167831
[9] Percival, Will J., The 2dF Galaxy Redshift Survey: the Power spectrum and the matter content of the Universe, Mon. Not. Roy. Astron. Soc., 327, 1297, 2001 · doi:10.1046/j.1365-8711.2001.04827.x
[10] Ivanov, Mikhail M.; Simonović, Marko; Zaldarriaga, Matias, Cosmological Parameters from the BOSS Galaxy Power Spectrum, JCAP, 05, 2020 · doi:10.1088/1475-7516/2020/05/042
[11] de Bernardis, P., A Flat universe from high resolution maps of the cosmic microwave background radiation, Nature, 404, 955-959, 2000 · doi:10.1038/35010035
[12] Bennett, C. L., First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: preliminary maps and basic results, Astrophys. J. Suppl., 148, 1-27, 2003 · doi:10.1086/377253
[13] Aghanim, N., Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys., 641, A6, 2020 · doi:10.1051/0004-6361/201833910
[14] Workman, R. L., Review of Particle Physics, PTEP, 2022, 2022 · doi:10.1093/ptep/ptac097
[15] Milgrom, M., A Modification of the Newtonian dynamics: implications for galaxies, Astrophys. J., 270, 371-383, 1983 · doi:10.1086/161131
[16] Milgrom, M., A modification of the Newtonian dynamics: implications for galaxy systems, Astrophys. J., 270, 384-389, 1983 · doi:10.1086/161132
[17] Milgrom, M., A Modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis, Astrophys. J., 270, 365-370, 1983 · doi:10.1086/161130
[18] Lelli, Federico; McGaugh, Stacy S.; Schombert, James M.; Desmond, Harry; Katz, Harley, The baryonic Tully-Fisher relation for different velocity definitions and implications for galaxy angular momentum, Mon. Not. Roy. Astron. Soc., 484, 3267-3278, 2019 · doi:10.1093/mnras/stz205
[19] Bekenstein, J.; Milgrom, Mordehai, Does the missing mass problem signal the breakdown of Newtonian gravity?, Astrophys. J., 286, 7-14, 1984 · doi:10.1086/162570
[20] Milgrom, Mordehai, Models of a modified-inertia formulation of MOND, Phys. Rev. D, 106, 2022 · doi:10.1103/PhysRevD.106.064060
[21] Lelli, Federico; McGaugh, Stacy S.; Schombert, James M.; Pawlowski, Marcel S., One Law to Rule Them All: the Radial Acceleration Relation of Galaxies, Astrophys. J., 836, 152, 2017 · doi:10.3847/1538-4357/836/2/152
[22] Desmond, Harry; Bartlett, Deaglan J.; Ferreira, Pedro G., On the functional form of the radial acceleration relation, Mon. Not. Roy. Astron. Soc., 521, 1817-1831, 2023 · doi:10.1093/mnras/stad597
[23] Desmond, Harry, The underlying radial acceleration relation, Mon. Not. Roy. Astron. Soc., 526, 3342-3351, 2023 · doi:10.1093/mnras/stad2762
[24] Brouwer, Margot M., The weak lensing radial acceleration relation: constraining modified gravity and cold dark matter theories with KiDS-1000, Astron. Astrophys., 650, A113, 2021 · doi:10.1051/0004-6361/202040108
[25] Mistele, Tobias; McGaugh, Stacy; Lelli, Federico; Schombert, James; Li, Pengfei, Radial acceleration relation of galaxies with joint kinematic and weak-lensing data, 2023
[26] Stiskalek, Richard; Desmond, Harry, On the fundamentality of the radial acceleration relation for late-type galaxy dynamics, Mon. Not. Roy. Astron. Soc., 525, 6130-6145, 2023 · doi:10.1093/mnras/stad2675
[27] Sanders, R. H., Clusters of galaxies with modified Newtonian dynamics (MOND), Mon. Not. Roy. Astron. Soc., 342, 901, 2003 · doi:10.1046/j.1365-8711.2003.06596.x
[28] Tian, Yong; Umetsu, Keiichi; Ko, Chung-Ming; Donahue, Megan; Chiu, I-Non, The Radial Acceleration Relation in CLASH Galaxy Clusters, Astrophys. J., 896, 70, 2020 · doi:10.3847/1538-4357/ab8e3d
[29] Li, Pengfei; Tian, Yong; Júlio, Mariana P.; Pawlowski, Marcel S.; Lelli, Federico; McGaugh, Stacy S.; Schombert, James M.; Read, Justin I.; Yu, Po-Chieh; Ko, Chung-Ming, Measuring galaxy cluster mass profiles into the low-acceleration regime with galaxy kinematics, Astron. Astrophys., 677, A24, 2023 · doi:10.1051/0004-6361/202346431
[30] Eckert, D.; Ettori, S.; Pointecouteau, E.; van der Burg, R. F. J.; Loubser, S. I., The gravitational field of X-COP galaxy clusters, Astron. Astrophys., 662, A123, 2022 · doi:10.1051/0004-6361/202142507
[31] Bekenstein, J. D., Phase Coupling Gravitation: symmetries and Gauge Fields, Phys. Lett. B, 202, 497-500, 1988 · doi:10.1016/0370-2693(88)91851-5
[32] Sanders, R. H., A Stratified framework for scalar - tensor theories of modified dynamics, Astrophys. J., 480, 492-502, 1997 · doi:10.1086/303980
[33] Bekenstein, Jacob D., Relativistic gravitation theory for the MOND paradigm, Phys. Rev. D, 70, 2004 · doi:10.1103/PhysRevD.70.083509
[34] Sanders, R. H., A Tensor-vector-scalar framework for modified dynamics and cosmic dark matter, Mon. Not. Roy. Astron. Soc., 363, 459, 2005 · doi:10.1111/j.1365-2966.2005.09375.x
[35] Skordis, Constantinos, Generalizing tensor-vector-scalar cosmology, Phys. Rev. D, 77, 2008 · doi:10.1103/PhysRevD.77.123502
[36] Milgrom, Mordehai, Bimetric MOND gravity, Phys. Rev. D, 80, 2009 · doi:10.1103/PhysRevD.80.123536
[37] Blanchet, Luc; Marsat, Sylvain, Relativistic MOND theory based on the Khronon scalar field, 2012
[38] Famaey, Benoit; McGaugh, Stacy, Modified Newtonian Dynamics (MOND): observational Phenomenology and Relativistic Extensions, Living Rev. Rel., 15, 10, 2012 · doi:10.12942/lrr-2012-10
[39] Skordis, Constantinos; Mota, D. F.; Ferreira, P. G.; Boehm, C., Large Scale Structure in Bekenstein’s theory of relativistic Modified Newtonian Dynamics, Phys. Rev. Lett., 96, 2006 · doi:10.1103/PhysRevLett.96.011301
[40] Hou, Shaoqi; Gong, Yungui; Calcagni, Gianluca, Gravitational Waves in Einstein-Æther Theory and Generalized TeVeS Theory after GW170817, Universe, 4, 84, 2018 · doi:10.3390/universe4080084
[41] Skordis, Constantinos; Złośnik, Tom, Gravitational alternatives to dark matter with tensor mode speed equaling the speed of light, Phys. Rev. D, 100, 2019 · doi:10.1103/PhysRevD.100.104013
[42] Skordis, Constantinos; Zlosnik, Tom, New Relativistic Theory for Modified Newtonian Dynamics, Phys. Rev. Lett., 127, 2021 · doi:10.1103/PhysRevLett.127.161302
[43] Skordis, Constantinos; Zlosnik, Tom, Aether scalar tensor theory: linear stability on Minkowski space, Phys. Rev. D, 106, 2022 · doi:10.1103/PhysRevD.106.104041
[44] Bernardo, Reginald Christian; Chen, Che-Yu, Dressed black holes in the new tensor-vector-scalar theory, Gen. Rel. Grav., 55, 23, 2023 · Zbl 1528.83070 · doi:10.1007/s10714-023-03075-x
[45] Kashfi, Tahere; Roshan, Mahmood, Cosmological dynamics of relativistic MOND, JCAP, 10, 2022 · doi:10.1088/1475-7516/2022/10/029
[46] Mistele, Tobias, Cherenkov radiation from stars constrains hybrid MOND dark matter models, JCAP, 11, 2022 · Zbl 1518.83038 · doi:10.1088/1475-7516/2022/11/008
[47] Mistele, Tobias; McGaugh, Stacy; Hossenfelder, Sabine, Aether scalar tensor theory confronted with weak lensing data at small accelerations, Astron. Astrophys., 676, A100, 2023 · doi:10.1051/0004-6361/202346025
[48] Tian, Shuxun; Hou, Shaoqi; Cao, Shuo; Zhu, Zong-Hong, Time evolution of the local gravitational parameters and gravitational wave polarizations in a relativistic MOND theory, Phys. Rev. D, 107, 2023 · doi:10.1103/PhysRevD.107.044062
[49] Llinares, Claudio, Extension of General Relativity with MOND limit predicts novel orbital structure in and around galaxies, 2023
[50] Verwayen, Peter; Skordis, Constantinos; Bœhm, Céline, Aether Scalar Tensor (AeST) theory: quasistatic spherical solutions and their phenomenology, 2023
[51] Mistele, Tobias, The Two Quasi-Static Limits of Aether Scalar Tensor Theory, 2023
[52] Bataki, Marianthi; Skordis, Constantinos; Zlosnik, Tom, Aether scalar tensor theory: Hamiltonian Formalism, 2023
[53] Scherrer, Robert J., Purely kinetic k-essence as unified dark matter, Phys. Rev. Lett., 93, 2004 · doi:10.1103/PhysRevLett.93.011301
[54] Arkani-Hamed, Nima; Cheng, Hsin-Chia; Luty, Markus A.; Mukohyama, Shinji, Ghost condensation and a consistent infrared modification of gravity, JHEP, 05, 074, 2004 · doi:10.1088/1126-6708/2004/05/074
[55] Arkani-Hamed, Nima; Cheng, Hsin-Chia; Luty, Markus A.; Mukohyama, Shinji; Wiseman, Toby, Dynamics of gravity in a Higgs phase, JHEP, 01, 036, 2007 · doi:10.1088/1126-6708/2007/01/036
[56] Binney, James; Tremaine, Scott, Galactic Dynamics: second Edition, 2008
[57] Freundlich, Jonathan; Famaey, Benoit; Oria, Pierre-Antoine; Bílek, Michal; Müller, Oliver; Ibata, Rodrigo, Probing the radial acceleration relation and the strong equivalence principle with the Coma cluster ultra-diffuse galaxies, Astron. Astrophys., 658, A26, 2022 · doi:10.1051/0004-6361/202142060
[58] Dormand, J. R.; Prince, P. J., A family of embedded Runge-Kutta formulae, Journal of Computational and Applied Mathematics, 6, 19-26, 1980 · Zbl 0448.65045 · doi:10.1016/0771-050x(80)90013-3
[59] Virtanen, Pauli, SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python, Nature Meth., 17, 261, 2020 · doi:10.1038/s41592-019-0686-2
[60] 1993, Springer Berlin Heidelberg
[61] Holmes, G. C., The use of hyperbolic cosines in solving cubic polynomials, The Mathematical Gazette, 86, 473-477, 2002 · doi:10.2307/3621149
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.