×

Out-of-equilibrium dynamics of quantum many-body systems with long-range interactions. (English) Zbl 07880429

Summary: Experimental progress in atomic, molecular, and optical platforms in the last decade has stimulated strong and broad interest in the quantum coherent dynamics of many long-range interacting particles. The prominent collective character of these systems enables novel non-equilibrium phenomena with no counterpart in conventional quantum systems with local interactions. Much of the theory work in this area either focussed on the impact of variable-range interaction tails on the physics of local interactions or relied on mean-field-like descriptions based on the opposite limit of all-to-all infinite-range interactions. In this Report, we present a systematic and organic review of recent advances in the field. Working with prototypical interacting quantum spin lattices without disorder, our presentation hinges upon a versatile theoretical formalism that interpolates between the few-body mean-field physics and the many-body physics of quasi-local interactions. Such a formalism allows us to connect these two regimes, providing both a formal quantitative tool and basic physical intuition. We leverage this unifying framework to review several findings of the last decade, including the peculiar non-ballistic spreading of quantum correlations, counter-intuitive slowdown of entanglement dynamics, suppression of thermalization and equilibration, anomalous scaling of defects upon traversing criticality, dynamical phase transitions, and genuinely non-equilibrium phases stabilized by periodic driving. The style of this Report is on the pedagogical side, which makes it accessible to readers without previous experience in the subject matter.

MSC:

81-XX Quantum theory
82-XX Statistical mechanics, structure of matter

References:

[1] Blatt, R.; Roos, C. F., Quantum simulations with trapped ions, Nat. Phys., 8, 4, 277-284, 2012
[2] Britton, J. W.; Sawyer, B. C.; Keith, A. C.; Wang, C. C.J.; Freericks, J. K.; Uys, H.; Biercuk, M. J.; Bollinger, J. J., Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins, Nature, 484, 7395, 489-492, 2012
[3] Richerme, P.; Gong, Z.-X.; Lee, A.; Senko, C.; Smith, J.; Foss-Feig, M.; Michalakis, S.; Gorshkov, A. V.; Monroe, C., Non-local propagation of correlations in quantum systems with long-range interactions, Nature, 511, 7508, 198-201, 2014
[4] Baumann, K.; Guerlin, C.; Brennecke, F.; Esslinger, T., Dicke quantum phase transition with a superfluid gas in an optical cavity, Nature, 464, 7293, 1301-1306, 2010
[5] Barredo, D.; Lienhard, V.; de Léséleuc, S.; Lahaye, T.; Browaeys, A., Synthetic three-dimensional atomic structures assembled atom by atom, Nature, 561, 7721, 79-82, 2018
[6] Yan, B.; Moses, S. A.; Gadway, B.; Covey, J. P.; Hazzard, K. R.A.; Rey, A. M.; Jin, D. S.; Ye, J., Observation of dipolar spin-exchange interactions with lattice-confined polar molecules, Nature, 501, 7468, 521-525, 2013
[7] Monroe, C.; Campbell, W. C.; Duan, L.-M.; Gong, Z.-X.; Gorshkov, A. V.; Hess, P. W.; Islam, R.; Kim, K.; Linke, N. M.; Pagano, G.; Richerme, P.; Senko, C.; Yao, N. Y., Programmable quantum simulations of spin systems with trapped ions, Rev. Modern Phys., 93, Article 025001 pp., 2021, URL https://link.aps.org/doi/10.1103/RevModPhys.93.025001
[8] Ritsch, H.; Domokos, P.; Brennecke, F.; Esslinger, T., Cold atoms in cavity-generated dynamical optical potentials, Rev. Modern Phys., 85, 2, 553-601, 2013
[9] Mivehvar, F.; Piazza, F.; Donner, T.; Ritsch, H., Cavity QED with quantum gases: new paradigms in many-body physics, Adv. Phys., 70, 1, 1-153, 2021
[10] Endres, M.; Bernien, H.; Keesling, A.; Levine, H.; Anschuetz, E. R.; Krajenbrink, A.; Senko, C.; Vuletic, V.; Greiner, M.; Lukin, M. D., Atom-by-atom assembly of defect-free one-dimensional cold atom arrays, Science, 354, 6315, 1024-1027, 2016, arXiv:https://science.sciencemag.org/content/354/6315/1024.full.pdf, URL https://science.sciencemag.org/content/354/6315/1024
[11] Labuhn, H.; Barredo, D.; Ravets, S.; de Léséleuc, S.; Macrì, T.; Lahaye, T.; Browaeys, A., Tunable two-dimensional arrays of single rydberg atoms for realizing quantum Ising models, Nature, 534, 7609, 667-670, 2016
[12] Zeiher, J.; y. Choi, J.; Rubio-Abadal, A.; Pohl, T.; van Bijnen, R.; Bloch, I.; Gross, C., Coherent many-body spin dynamics in a long-range interacting Ising chain, Phys. Rev. X, 7, Article 041063 pp., 2017, URL https://link.aps.org/doi/10.1103/PhysRevX.7.041063
[13] Hollerith, S.; Srakaew, K.; Wei, D.; Rubio-Abadal, A.; Adler, D.; Weckesser, P.; Kruckenhauser, A.; Walther, V.; van Bijnen, R.; Rui, J.; Gross, C.; Bloch, I.; Zeiher, J., Realizing distance-selective interactions in a rydberg-dressed atom array, Phys. Rev. Lett., 128, Article 113602 pp., 2022, URL https://link.aps.org/doi/10.1103/PhysRevLett.128.113602
[14] Polkovnikov, A.; Sengupta, K.; Silva, A.; Vengalattore, M., Colloquium: Nonequilibrium dynamics of closed interacting quantum systems, Rev. Modern Phys., 83, 863-883, 2011, URL https://link.aps.org/doi/10.1103/RevModPhys.83.863
[15] Lieb, E. H.; Robinson, D. W., The finite group velocity of quantum spin systems, Comm. Math. Phys., 28, 3, 251-257, 1972, https://cmp/1103858407
[16] Mottl, R.; Brennecke, F.; Baumann, K.; Landig, R.; Donner, T.; Esslinger, T., Roton-type mode softening in a quantum gas with cavity-mediated long-range interactions, Science, 336, 6088, 1570-1573, 2012, URL http://www.ncbi.nlm.nih.gov/pubmed/22604724http://www.sciencemag.org/content/336/6088/1570.fullhttps://www.sciencemag.org/lookup/doi/10.1126/science.1220314
[17] Jurcevic, P.; Lanyon, B. P.; Hauke, P.; Hempel, C.; Zoller, P.; Blatt, R.; Roos, C. F., Quasiparticle engineering and entanglement propagation in a quantum many-body system, Nature, 511, 7508, 202-205, 2014
[18] Cheneau, M.; Barmettler, P.; Poletti, D.; Endres, M.; Schauß, P.; Fukuhara, T.; Gross, C.; Bloch, I.; Kollath, C.; Kuhr, S., Light-cone-like spreading of correlations in a quantum many-body system, Nature, 481, 7382, 484-487, 2012
[19] Baumann, K.; Mottl, R.; Brennecke, F.; Esslinger, T., Exploring symmetry breaking at the Dicke quantum phase transition, Phys. Rev. Lett., 107, 14, Article 140402 pp., 2011, URL http://link.aps.org/doi/10.1103/PhysRevLett.107.140402
[20] Brennecke, F.; Mottl, R.; Baumann, K.; Landig, R.; Donner, T.; Esslinger, T., Real-time observation of fluctuations at the driven-dissipative Dicke phase transition, Proc. Natl. Acad. Sci., 110, 29, 11763-11767, 2013
[21] Klinder, J.; Keßler, H.; Bakhtiari, M. R.; Thorwart, M.; Hemmerich, A., Observation of a superradiant mott insulator in the Dicke-Hubbard model, Phys. Rev. Lett., 115, 23, Article 230403 pp., 2015
[22] Landig, R.; Hruby, L.; Dogra, N.; Landini, M.; Mottl, R.; Donner, T.; Esslinger, T., Quantum phases from competing short- and long-range interactions in an optical lattice, Nature, 532, 7600, 476-479, 2016
[23] Léonard, J.; Morales, A.; Zupancic, P.; Donner, T.; Esslinger, T., Monitoring and manipulating Higgs and Goldstone modes in a supersolid quantum gas, Science, 358, 6369, 1415-1418, 2017, arXiv:1704.05803
[24] Zhang, J.; Pagano, G.; Hess, P. W.; Kyprianidis, A.; Becker, P.; Kaplan, H.; Gorshkov, A. V.; Gong, Z.-X.; Monroe, C., Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator, Nature, 551, 7682, 601-604, 2017
[25] Muniz, J. A.; Barberena, D.; Lewis-Swan, R. J.; Young, D. J.; Cline, J. R.; Rey, A. M.; Thompson, J. K., Exploring dynamical phase transitions with cold atoms in an optical cavity, Nature, 580, 7805, 602-607, 2020, URL https://www.nature.com/articles/s41586-020-2224-x
[26] Keesling, A.; Omran, A.; Levine, H.; Bernien, H.; Pichler, H.; Choi, S.; Samajdar, R.; Schwartz, S.; Silvi, P.; Sachdev, S.; Zoller, P.; Endres, M.; Greiner, M.; Vuletić, V.; Lukin, M. D., Quantum Kibble-Zurek mechanism and critical dynamics on a programmable rydberg simulator, Nature, 568, 7751, 207-211, 2019
[27] Klinder, J.; Keßler, H.; Wolke, M.; Mathey, L.; Hemmerich, A., Dynamical phase transition in the open Dicke model, Proc. Natl. Acad. Sci., 112, 11, 3290-3295, 2015
[28] Helmrich, S.; Arias, A.; Lochead, G.; Wintermantel, T. M.; Buchhold, M.; Diehl, S.; Whitlock, S., Signatures of self-organized criticality in an ultracold atomic gas, Nature, 577, 7791, 481-486, 2020, URL arXiv:1806.09931
[29] Zhang, J.; Hess, P.; Kyprianidis, A.; Becker, P.; Lee, A.; Smith, J.; Pagano, G.; Potirniche, I.-D.; Potter, A. C.; Vishwanath, A., Observation of a discrete time crystal, Nature, 543, 7644, 217, 2017
[30] Choi, S.; Choi, J.; Landig, R.; Kucsko, G.; Zhou, H.; Isoya, J.; Jelezko, F.; Onoda, S.; Sumiya, H.; Khemani, V.; von Keyserlingk, C.; Yao, N. Y.; Demler, E.; Lukin, M. D., Observation of discrete time-crystalline order in a disordered dipolar many-body system, Nature, 543, 7644, 221-225, 2017
[31] Rovny, J.; Blum, R. L.; Barrett, S. E., Observation of discrete-time-crystal signatures in an ordered dipolar many-body system, Phys. Rev. Lett., 120, Article 180603 pp., 2018, URL https://link.aps.org/doi/10.1103/PhysRevLett.120.180603
[32] Gärttner, M.; Bohnet, J. G.; Safavi-Naini, A.; Wall, M. L.; Bollinger, J. J.; Rey, A. M., Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet, Nat. Phys., 13, 8, 781-786, 2017, arXiv:1608.08938
[33] Wei, K. X.; Ramanathan, C.; Cappellaro, P., Exploring localization in nuclear spin chains, Phys. Rev. Lett., 120, Article 070501 pp., 2018, URL https://link.aps.org/doi/10.1103/PhysRevLett.120.070501
[34] Joshi, M. K.; Elben, A.; Vermersch, B.; Brydges, T.; Maier, C.; Zoller, P.; Blatt, R.; Roos, C. F., Quantum information scrambling in a trapped-ion quantum simulator with tunable range interactions, Phys. Rev. Lett., 124, 24, Article 240505 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevLett.124.240505
[35] Leroux, I. D.; Schleier-Smith, M. H.; Vuletić, V., Implementation of cavity squeezing of a collective atomic spin, Phys. Rev. Lett., 104, Article 073602 pp., 2010, URL https://link.aps.org/doi/10.1103/PhysRevLett.104.073602
[36] Bilitewski, T.; De Marco, L.; Li, J.-R.; Matsuda, K.; Tobias, W. G.; Valtolina, G.; Ye, J.; Rey, A. M., Dynamical generation of spin squeezing in ultracold dipolar molecules, Phys. Rev. Lett., 126, Article 113401 pp., 2021
[37] Else, D. V.; Machado, F.; Nayak, C.; Yao, N. Y., Improved Lieb-Robinson bound for many-body hamiltonians with power-law interactions, Phys. Rev. A, 101, Article 022333 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevA.101.022333
[38] Tran, M. C.; Ehrenberg, A.; Guo, A. Y.; Titum, P.; Abanin, D. A.; Gorshkov, A. V., Locality and heating in periodically driven, power-law-interacting systems, Phys. Rev. A, 100, Article 052103 pp., 2019, URL https://link.aps.org/doi/10.1103/PhysRevA.100.052103
[39] Tran, M. C.; Guo, A. Y.; Su, Y.; Garrison, J. R.; Eldredge, Z.; Foss-Feig, M.; Childs, A. M.; Gorshkov, A. V., Locality and digital quantum simulation of power-law interactions, Phys. Rev. X, 9, Article 031006 pp., 2019, URL https://link.aps.org/doi/10.1103/PhysRevX.9.031006
[40] Guo, A. Y.; Tran, M. C.; Childs, A. M.; Gorshkov, A. V.; Gong, Z.-X., Signaling and scrambling with strongly long-range interactions, Phys. Rev. A, 102, Article 010401 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevA.102.010401
[41] Chen, C.-F.; Lucas, A., Finite speed of quantum scrambling with long range interactions, Phys. Rev. Lett., 123, Article 250605 pp., 2019, URL https://link.aps.org/doi/10.1103/PhysRevLett.123.250605
[42] Storch, D.-M.; van den Worm, M.; Kastner, M., Interplay of soundcone and supersonic propagation in lattice models with power law interactions, New J. Phys., 17, Article 063021 pp., 2015
[43] Kastner, M., Diverging equilibration times in long-range quantum spin models, Phys. Rev. Lett., 106, 13, Article 130601 pp., 2011
[44] Hernández-Santana, S.; Gogolin, C.; Cirac, J. I.; Acín, A., Correlation decay in fermionic lattice systems with power-law interactions at nonzero temperature, Phys. Rev. Lett., 119, Article 110601 pp., 2017, URL https://link.aps.org/doi/10.1103/PhysRevLett.119.110601
[45] Kuwahara, T.; Saito, K., Area law of noncritical ground states in 1d long-range interacting systems, Nature Commun., 11, 1, 4478, 2020
[46] Defenu, Nicolò; Donner, Tobias; Macrì, Tommaso; Pagano, Guido; Ruffo, Stefano; Trombettoni, Andrea, Long-range interacting quantum systems, Rev. Mod. Phys., 95, Article 035002 pp., 2023
[47] Campa, A.; Dauxois, T.; Ruffo, S., Statistical mechanics and dynamics of solvable models with long-range interactions, Phys. Rep., 480, 3-6, 57-159, 2009
[48] Sachdev, S., Quantum Phase Transitions, 1999, Cambridge Univ. Press: Cambridge Univ. Press Cambridge
[49] Täuber, U. C., Critical Dynamics, 2014, Cambridge University Press
[50] Cevolani, L.; Carleo, G.; Sanchez-Palencia, L., Spreading of correlations in exactly solvable quantum models with long-range interactions in arbitrary dimensions, New J. Phys., 18, 9, Article 093002 pp., 2016
[51] Cevolani, L.; Despres, J.; Carleo, G.; Tagliacozzo, L.; Sanchez-Palencia, L., Universal scaling laws for correlation spreading in quantum systems with short- and long-range interactions, Phys. Rev. B, 98, Article 024302 pp., 2018
[52] N. Defenu, Metastability and discrete spectrum of long-range systems, in: Proceedings of the National Academy of Sciences, vol. 118, (30) http://dx.doi.org/10.1073/pnas.2101785118.
[53] Defenu, N.; Enss, T.; Kastner, M.; Morigi, G., Dynamical critical scaling of long-range interacting quantum magnets, Phys. Rev. Lett., 121, Article 240403 pp., 2018, URL https://link.aps.org/doi/10.1103/PhysRevLett.121.240403
[54] N. Defenu, Quantum adiabatic cycles and their breakdown, Comm. Phys. 4 (1) http://dx.doi.org/10.1080/s42005-021-00649-6.
[55] Heyl, M., Dynamical quantum phase transitions: a review, Rep. Progr. Phys., 81, 5, Article 054001 pp., 2018
[56] Lerose, A.; Marino, J.; Žunkovič, B.; Gambassi, A.; Silva, A., Chaotic dynamical ferromagnetic phase induced by nonequilibrium quantum fluctuations, Phys. Rev. Lett., 120, Article 130603 pp., 2018, URL https://link.aps.org/doi/10.1103/PhysRevLett.120.130603
[57] A. Lerose, B. Žunkovič, J. Marino, A. Gambassi, A. Silva, Impact of nonequilibrium fluctuations on prethermal dynamical phase transitions in long-range interacting spin chains, Phys. Rev. B 99 (4) http://dx.doi.org/10.1103/physrevb.99.045128.
[58] Lerose, A.; Pappalardi, S., Origin of the slow growth of entanglement entropy in long-range interacting spin systems, Phys. Rev. Res., 2, Article 012041 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevResearch.2.012041
[59] Hauke, P.; Tagliacozzo, L., Spread of correlations in long-range interacting quantum systems, Phys. Rev. Lett., 111, 20, Article 207202 pp., 2013
[60] Cevolani, L.; Carleo, G.; Sanchez-Palencia, L., Protected quasilocality in quantum systems with long-range interactions, Phys. Rev. A, 92, Article 041603 pp., 2015, URL https://link.aps.org/doi/10.1103/PhysRevA.92.041603
[61] Lepori, L.; Vodola, D.; Pupillo, G.; Gori, G.; Trombettoni, A., Effective theory and breakdown of conformal symmetry in a long-range quantum chain, Ann. Physics, 374, 35-66, 2016
[62] Liu, F.; Lundgren, R.; Titum, P.; Pagano, G.; Zhang, J.; Monroe, C.; Gorshkov, A. V., Confined quasiparticle dynamics in long-range interacting quantum spin chains, Phys. Rev. Lett., 122, Article 150601 pp., 2019, URL https://link.aps.org/doi/10.1103/PhysRevA.99.043404
[63] Lerose, A.; Žunkovič, B.; Silva, A.; Gambassi, A., Quasilocalized excitations induced by long-range interactions in translationally invariant quantum spin chains, Phys. Rev. B, 99, Article 121112 pp., 2019, URL https://link.aps.org/doi/10.1103/PhysRevB.99.121112
[64] Kac, M.; Uhlenbeck, G. E.; Hemmer, P. C., On the van der waals theory of the vapor-liquid equilibrium. I. Discussion of a one-dimensional model, J. Math. Phys., 4, 2, 216-228, 1963 · Zbl 0938.82517
[65] Lazo, E. G.; Heyl, M.; Dalmonte, M.; Angelone, A., Finite-temperature critical behavior of long-range quantum Ising models, SciPost Phys., 11, 076, 2021, URL https://scipost.org/10.21468/SciPostPhys.11.4.076
[66] Joyce, G. S., Spherical model with long-range ferromagnetic interactions, Phys. Rev., 146, 349-358, 1966, URL https://link.aps.org/doi/10.1103/PhysRev.146.349
[67] Sak, J., Recursion relations and fixed points for ferromagnets with long-range interactions, Phys. Rev. B, 8, 1, 281-285, 1973
[68] Defenu, N.; Trombettoni, A.; Codello, A., Fixed-point structure and effective fractional dimensionality for O( N) models with long-range interactions, Phys. Rev. E, 92, 5, 289, 2015
[69] Dyson, F. J., Existence of a phase-transition in a one-dimensional Ising ferromagnet, Comm. Math. Phys., 12, 2, 91-107, 1969 · Zbl 1306.47082
[70] Defenu, N.; Trombettoni, A.; Ruffo, S., Criticality and phase diagram of quantum long-range O( N) models, Phys. Rev. B, 96, 10, 1, 2017
[71] Knap, M.; Kantian, A.; Giamarchi, T.; Bloch, I.; Lukin, M. D.; Demler, E., Probing real-space and time-resolved correlation functions with many-body Ramsey interferometry, Phys. Rev. Lett., 111, Article 147205 pp., 2013
[72] Angelini, M. C.; Parisi, G.; Ricci-Tersenghi, F., Relations between short-range and long-range Ising models, Phys. Rev. E, 89, Article 062120 pp., 2014, URL https://link.aps.org/doi/10.1103/PhysRevE.89.062120
[73] Horita, T.; Suwa, H.; Todo, S., Upper and lower critical decay exponents of Ising ferromagnets with long-range interaction, Phys. Rev. E, 95, 1, Article 012143 pp., 2017
[74] Behan, C.; Rastelli, L.; Rychkov, S.; Zan, B., Long-range critical exponents near the short-range crossover, Phys. Rev. Lett., 118, 24, 1819, 2017
[75] Dutta, A.; Bhattacharjee, J. K., Phase transitions in the quantum Ising and rotor models with a long-range interaction, Phys. Rev. B, 64, Article 184106 pp., 2001, URL https://link.aps.org/doi/10.1103/PhysRevB.64.184106
[76] Monthus, C., Dyson hierarchical quantum ferromagnetic Ising chain with pure or random transverse fields, J. Stat. Mech. Theory Exp., 2015, 5, 05026, 2015, arXiv:1503.03727 · Zbl 1456.82064
[77] Monthus, C., Real-space renormalization for the finite temperature statics and dynamics of the dyson long-ranged ferromagnetic and spin-glass models, J. Stat. Mech. Theory Exp., 2016, 4, Article 043302 pp., 2016 · Zbl 1456.82753
[78] Barré, J.; Mukamel, D.; Ruffo, S., Inequivalence of ensembles in a system with long-range interactions, Phys. Rev. Lett., 87, Article 030601 pp., 2001
[79] Aizenman, M.; Duminil-Copin, H.; Warzel, S., Dimerization and néel order in different quantum spin chains through a shared loop representation, Ann. Henri Poincaré, 21, 8, 2737-2774, 2020 · Zbl 1453.82003
[80] Wannier, G., Statistical Physics, Dover Books on Physics, 1987, Dover Publications, URL https://books.google.ch/books?id=MDYihVaJgDIC · Zbl 1217.82001
[81] Landau, L. D.; Lifshit’s, E. M., Quantum Mechanics : Non-Relativistic Theory, 1991, Butterworth-Heinemann
[82] Latorre, J. I.; Orús, R.; Rico, E.; Vidal, J., Entanglement entropy in the Lipkin-Meshkov-Glick model, Phys. Rev. A, 71, Article 064101 pp., 2005, URL https://link.aps.org/doi/10.1103/PhysRevA.71.064101 · Zbl 1227.81275
[83] Vidal, J.; Mosseri, R.; Dukelsky, J., Entanglement in a first-order quantum phase transition, Phys. Rev. A, 69, Article 054101 pp., 2004, URL https://link.aps.org/doi/10.1103/PhysRevA.69.054101
[84] Dusuel, S.; Vidal, J., Continuous unitary transformations and finite-size scaling exponents in the Lipkin-Meshkov-Glick model, Phys. Rev. B, 71, 22, 48, 2005
[85] Lipkin, H. J.; Meshkov, N.; Glick, A. J., Validity of many-body approximation methods for a solvable model, Nucl. Phys., 62, 2, 188-198, 1965
[86] Meshkov, N.; Glick, A. J.; Lipkin, H. J., Validity of many-body approximation methods for a solvable model. (II). Linearization procedures, Nucl. Phys., 62, 2, 199-210, 1965
[87] Glick, A. J.; Lipkin, H. J.; Meshkov, N., Validity of many-body approximation methods for a solvable model. (III). Diagram summations, Nucl. Phys., 62, 2, 211-224, 1965
[88] Ortiz, G.; Somma, R.; Dukelsky, J.; Rombouts, S., Exactly-solvable models derived from a generalized gaudin algebra, Nuclear Phys. B, 707, 3, 421-457, 2005 · Zbl 1137.82312
[89] Lerose, A.; Marino, J.; Gambassi, A.; Silva, A., Prethermal quantum many-body kapitza phases of periodically driven spin systems, Phys. Rev. B, 100, Article 104306 pp., 2019, URL https://link.aps.org/doi/10.1103/PhysRevB.100.104306
[90] Frérot, I.; Naldesi, P.; Roscilde, T., Entanglement and fluctuations in the xxz model with power-law interactions, Phys. Rev. B, 95, Article 245111 pp., 2017, URL https://link.aps.org/doi/10.1103/PhysRevB.95.245111
[91] Pappalardi, S.; Calabrese, P.; Parisi, G., Entanglement entropy of the long-range dyson hierarchical model, J. Stat. Mech. Theory Exp., 2019, 7, Article 073102 pp., 2019 · Zbl 1456.81084
[92] Monthus, C., Properties of the simplest inhomogeneous and homogeneous tree-tensor-states for long-ranged quantum spin chains with or without disorder, Phys. A, 576, Article 126040 pp., 2021 · Zbl 1528.82013
[93] Koffel, T.; Lewenstein, M.; Tagliacozzo, L., Entanglement entropy for the long-range Ising chain in a transverse field, Phys. Rev. Lett., 109, 26, Article 267203 pp., 2012
[94] Vodola, D.; Lepori, L.; Ercolessi, E.; Gorshkov, A. V.; Pupillo, G., Kitaev chains with long-range pairing, Phys. Rev. Lett., 113, 15, Article 156402 pp., 2014
[95] A. Gabrielli, M. Joyce, B. Marcos, Quasistationary states and the range of pair interactions, Phys. Rev. Lett. 105 (21) http://dx.doi.org/10.1103/physrevlett.105.210602.
[96] Roy, S. S.; Dhar, H. S., Effect of long-range interactions on multipartite entanglement in Heisenberg chains, Phys. Rev. A, 99, 6, Article 062318 pp., 2019
[97] Franchini, F., An Introduction to Integrable Techniques for One-Dimensional Quantum Systems, 2017, Springer · Zbl 1376.82001
[98] F. Kranzl, S. Birnkammer, M.K. Joshi, A. Bastianello, R. Blatt, M. Knap, C.F. Roos, Observation of magnon bound states in the long-range, anisotropic Heisenberg model, arXiv preprint arXiv:2212.03899, https://doi.org/10.48550/arXiv.2212.03899.
[99] Lieb, E.; Schultz, T.; Mattis, D., Two soluble models of an antiferromagnetic chain, Ann. Physics, 16, 3, 407-466, 1961, URL https://www.sciencedirect.com/science/article/pii/0003491661901154?via · Zbl 0129.46401
[100] Lerose, A.; Surace, F. M.; Mazza, P. P.; Perfetto, G.; Collura, M.; Gambassi, A., Quasilocalized dynamics from confinement of quantum excitations, Phys. Rev. B, 102, Article 041118 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevB.102.041118
[101] Muschik, C.; Heyl, M.; Martinez, E.; Monz, T.; Schindler, P.; Vogell, B.; Dalmonte, M.; Hauke, P.; Blatt, R.; Zoller, P., U(1) wilson lattice gauge theories in digital quantum simulators, New J. Phys., 19, 10, Article 103020 pp., 2017
[102] McCoy, B. M.; Wu, T. T., Two-dimensional Ising field theory in a magnetic field: Breakup of the cut in the two-point function, Phys. Rev. D, 18, 1259-1267, 1978, URL https://link.aps.org/doi/10.1103/PhysRevD.18.1259
[103] Verdel, R.; Liu, F.; Whitsitt, S.; Gorshkov, A. V.; Heyl, M., Real-time dynamics of string breaking in quantum spin chains, Phys. Rev. B, 102, Article 014308 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevB.102.014308
[104] Collura, M.; De Luca, A.; Rossini, D.; Lerose, A., Discrete time-crystalline response stabilized by domain-wall confinement, Phys. Rev. X, 12, Article 031037 pp., 2022, URL https://link.aps.org/doi/10.1103/PhysRevX.12.031037
[105] Frérot, I.; Naldesi, P.; Roscilde, T., Multispeed prethermalization in quantum spin models with power-law decaying interactions, Phys. Rev. Lett., 120, Article 050401 pp., 2018, URL https://link.aps.org/doi/10.1103/PhysRevLett.120.050401
[106] Acevedo, O. L.; Quiroga, L.; Rodriguez, F. J.; Johnson, N. F., New dynamical scaling universality for quantum networks across adiabatic quantum phase transitions, Phys. Rev. Lett., 112, 3, Article 030403 pp., 2014
[107] Hwang, M. J.; Puebla, R.; Plenio, M. B., Quantum phase transition and universal dynamics in the Rabi model, Phys. Rev. Lett., 115, 18, Article 180404 pp., 2015
[108] Bachmann, S.; Fraas, M.; Graf, G. M., Dynamical crossing of an infinitely degenerate critical point, Ann. Henri Poincaré, 18, 5, 1755-1776, 2017 · Zbl 1366.81319
[109] Weidinger, S. A.; Knap, M., Floquet prethermalization and regimes of heating in a periodically driven, interacting quantum system, Sci. Rep., 7, 1, 1-10, 2017
[110] Syed, M.; Enss, T.; Defenu, N., Dynamical quantum phase transition in a bosonic system with long-range interactions, Phys. Rev. B, 103, Article 064306 pp., 2021, URL https://link.aps.org/doi/10.1103/PhysRevB.103.064306
[111] Lieb, E. H., Exact solution of the F model of an antiferroelectric, Phys. Rev. Lett., 18, 24, 1046-1048, 1967
[112] Calabrese, P.; Cardy, J., Entanglement entropy and quantum field theory, J. Stat. Mech. Theory Exp., 2004, 6, 06002, 2004 · Zbl 1082.82002
[113] Läuchli, A. M.; Kollath, C., Spreading of correlations and entanglement after a quench in the one-dimensional Bose-Hubbard model, J. Stat. Mech. Theory Exp., 2008, 05, Article P05018 pp., 2008
[114] Kim, H.; Huse, D. A., Ballistic spreading of entanglement in a diffusive nonintegrable system, Phys. Rev. Lett., 111, Article 127205 pp., 2013, URL https://link.aps.org/doi/10.1103/PhysRevLett.111.127205
[115] Nahum, A.; Ruhman, J.; Vijay, S.; Haah, J., Quantum entanglement growth under random unitary dynamics, Phys. Rev. X, 7, Article 031016 pp., 2017, URL https://link.aps.org/doi/10.1103/PhysRevX.7.031016
[116] Fukuhara, T.; Schauß, P.; Endres, M.; Hild, S.; Cheneau, M.; Bloch, I.; Gross, C., Microscopic observation of magnon bound states and their dynamics, Nature, 502, 7469, 76-79, 2013
[117] Manmana, S. R.; Wessel, S.; Noack, R. M.; Muramatsu, A., Strongly correlated fermions after a quantum quench, Phys. Rev. Lett., 98, Article 210405 pp., 2007
[118] P. Barmettler, D. Poletti, M. Cheneau, C. Kollath, Propagation front of correlations in an interacting bose gas, Phys. Rev. A 85 (5) http://dx.doi.org/10.1080/physreva.85.053625.
[119] G. Carleo, F. Becca, L. Sanchez-Palencia, S. Sorella, M. Fabrizio, Light-cone effect and supersonic correlations in one- and two-dimensional bosonic superfluids, Phys. Rev. A 89 (3) http://dx.doi.org/10.1080/physreva.89.031602.
[120] Kormos, M.; Collura, M.; Takács, G.; Calabrese, P., Real-time confinement following a quantum quench to a non-integrable model, Nat. Phys., 13, 3, 246-249, 2017
[121] Landsman, K. A.; Figgatt, C.; Schuster, T.; Linke, N. M.; Yoshida, B.; Yao, N. Y.; Monroe, C., Verified quantum information scrambling, Nature, 567, 7746, 61-65, 2019
[122] Tran, M. C.; Guo, A. Y.; Baldwin, C. L.; Ehrenberg, A.; Gorshkov, A. V.; Lucas, A., Lieb-Robinson light cone for power-law interactions, Phys. Rev. Lett., 127, Article 160401 pp., 2021, URL https://link.aps.org/doi/10.1103/PhysRevLett.127.160401
[123] Hastings, M. B.; Koma, T., Spectral Gap and Exponential Decay of Correlations, Comm. Math. Phys., 265, 781, 2006 · Zbl 1104.82010
[124] Foss-Feig, M.; Gong, Z.-X.; Clark, C. W.; Gorshkov, A. V., Nearly linear light cones in long-range interacting quantum systems, Phys. Rev. Lett., 114, 15, Article 157201 pp., 2015
[125] C.-F. Chen, A. Lucas, C. Yin, Speed limits and locality in many-body quantum dynamics, arXiv preprint arXiv:2303.07386, http://dx.doi.org/10.48550/arXiv.2303.07386.
[126] Eisert, J.; Van Den Worm, M.; Manmana, S. R.; Kastner, M., Breakdown of quasilocality in long-range quantum lattice models, Phys. Rev. Lett., 111, 26, Article 260401 pp., 2013
[127] Buyskikh, A. S.; Fagotti, M.; Schachenmayer, J.; Essler, F.; Daley, A. J., Entanglement growth and correlation spreading with variable-range interactions in spin and fermionic tunneling models, Phys. Rev. A, 93, 5, Article 053620 pp., 2016
[128] Schachenmayer, J.; Pikovski, A.; Rey, A. M., Dynamics of correlations in two-dimensional quantum spin models with long-range interactions: a phase-space monte-carlo study, New J. Phys., 17, 6, Article 065009 pp., 2015
[129] Schachenmayer, J.; Lanyon, B. P.; Roos, C. F.; Daley, A. J., Entanglement growth in quench dynamics with variable range interactions, Phys. Rev. X, 3, 3, Article 031015 pp., 2013
[130] Tran, M. C.; Chen, C.-F.; Ehrenberg, A.; Guo, A. Y.; Deshpande, A.; Hong, Y.; Gong, Z.-X.; Gorshkov, A. V.; Lucas, A., Hierarchy of linear light cones with long-range interactions, Phys. Rev. X, 10, Article 031009 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevX.10.031009
[131] Schachenmayer, J.; Pikovski, A.; Rey, A. M., Many-body quantum spin dynamics with monte carlo trajectories on a discrete phase space, Phys. Rev. X, 5, 1, Article 011022 pp., 2015
[132] Budich, J. C.; Heyl, M., Dynamical topological order parameters far from equilibrium, Phys. Rev. B, 93, Article 085416 pp., 2016, URL https://link.aps.org/doi/10.1103/PhysRevB.93.085416
[133] Nachtergaele, B.; Sims, R., Lieb-Robinson bounds and the exponential clustering theorem, Comm. Math. Phys., 265, 1, 119-130, 2006 · Zbl 1104.82013
[134] Nachtergaele, B.; Ogata, Y.; Sims, R., Propagation of correlations in quantum lattice systems, J. Stat. Phys., 124, 1, 1-13, 2006 · Zbl 1194.82058
[135] Nachtergaele, B.; Raz, H.; Schlein, B.; Sims, R., Lieb-Robinson bounds for harmonic and anharmonic lattice systems, Comm. Math. Phys., 286, 1, 1073-1098, 2009 · Zbl 1196.82074
[136] Prémont-Schwarz, I.; Hamma, A.; Klich, I.; Markopoulou-Kalamara, F., Lieb-Robinson bounds for commutator-bounded operators, Phys. Rev. A, 81, Article 040102 pp., 2010, URL https://link.aps.org/doi/10.1103/PhysRevA.81.040102
[137] Prémont-Schwarz, I.; Hnybida, J., Lieb-Robinson bounds on the speed of information propagation, Phys. Rev. A, 81, Article 062107 pp., 2010, URL https://link.aps.org/doi/10.1103/PhysRevA.81.062107
[138] Gong, Z.-X.; Foss-Feig, M.; Michalakis, S.; Gorshkov, A. V., Persistence of locality in systems with power-law interactions, Phys. Rev. Lett., 113, 3, Article 030602 pp., 2014
[139] Eldredge, Z.; Gong, Z.-X.; Young, J. T.; Moosavian, A. H.; Foss-Feig, M.; Gorshkov, A. V., Fast quantum state transfer and entanglement renormalization using long-range interactions, Phys. Rev. Lett., 119, Article 170503 pp., 2017, URL https://link.aps.org/doi/10.1103/PhysRevLett.119.170503
[140] Tran, M. C.; Chen, C.-F.; Ehrenberg, A.; Guo, A. Y.; Deshpande, A.; Hong, Y.; Gong, Z.-X.; Gorshkov, A. V.; Lucas, A., Hierarchy of linear light cones with long-range interactions, Phys. Rev. X, 10, Article 031009 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevX.10.031009
[141] Tran, M. C.; Guo, A. Y.; Deshpande, A.; Lucas, A.; Gorshkov, A. V., Optimal state transfer and entanglement generation in power-law interacting systems, Phys. Rev. X, 11, Article 031016 pp., 2021, URL https://link.aps.org/doi/10.1103/PhysRevX.11.031016
[142] Kuwahara, T.; Saito, K., Strictly linear light cones in long-range interacting systems of arbitrary dimensions, Phys. Rev. X, 10, Article 031010 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevX.10.031010
[143] Jona-Lasinio, G.; Presilla, C., Chaotic properties of quantum many-body systems in the thermodynamic limit, Phys. Rev. Lett., 77, 4322-4325, 1996, URL https://link.aps.org/doi/10.1103/PhysRevLett.77.4322
[144] Dauxois, T.; Ruffo, S.; Arimondo, E.; Wilkens (Eds.), M., The Hamiltonian Mean Field Model: From Dynamics To Statistical Mechanics and Back, 2002, Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg
[145] Mukamel, D.; Ruffo, S.; Schreiber, N., Breaking of ergodicity and long relaxation times in systems with long-range interactions, Phys. Rev. Lett., 95, 24, Article 240604 pp., 2005, arXiv:0508604, URL https://link.aps.org/doi/10.1103/PhysRevLett.95.240604
[146] Bachelard, R.; Kastner, M., Universal threshold for the dynamical behavior of lattice systems with long-range interactions, Phys. Rev. Lett., 110, Article 170603 pp., 2013, URL https://link.aps.org/doi/10.1103/PhysRevLett.110.170603
[147] Schütz, S.; Morigi, G., Prethermalization of atoms due to photon-mediated long-range interactions, Phys. Rev. Lett., 113, 20, Article 203002 pp., 2014
[148] Schütz, S.; Habibian, H.; Morigi, G., Cooling of atomic ensembles in optical cavities: Semiclassical limit, Phys. Rev. A, 88, 3, Article 033427 pp., 2013
[149] Schütz, S.; Jäger, S. B.; Morigi, G., Thermodynamics and dynamics of atomic self-organization in an optical cavity, Phys. Rev. A, 92, 6, Article 063808 pp., 2015
[150] Campa, A.; Dauxois, T.; Fanelli, D.; Ruffo, S., Physics of Long-Range Interacting Systems, 2014, Oxford Univ. Press · Zbl 1303.82003
[151] Barré, J.; Gonçalves, B., Ensemble inequivalence in random graphs, Phys. A, 386, 1, 212-218, 2007
[152] Latella, I.; Pérez-Madrid, A.; Campa, A.; Casetti, L.; Ruffo, S., Thermodynamics of nonadditive systems, Phys. Rev. Lett., 114, Article 230601 pp., 2015, URL https://link.aps.org/doi/10.1103/PhysRevLett.114.230601
[153] Ispolatov, I.; Cohen, E. G.D., On first-order phase transitions in microcanonical and canonical non-extensive systems, Physica A, 295, 3, 475-487, 2001, arXiv:cond-mat/0101311 · Zbl 0978.82035
[154] Gupta, S.; Potters, M.; Ruffo, S., One-dimensional lattice of oscillators coupled through power-law interactions: Continuum limit and dynamics of spatial fourier modes, Phys. Rev. E, 85, Article 066201 pp., 2012, URL https://link.aps.org/doi/10.1103/PhysRevE.85.066201
[155] Gupta, S.; Campa, A.; Ruffo, S., Overdamped dynamics of long-range systems on a one-dimensional lattice: Dominance of the mean-field mode and phase transition, Phys. Rev. E, 86, Article 061130 pp., 2012, URL https://link.aps.org/doi/10.1103/PhysRevE.86.061130
[156] Schütz, S.; Jäger, S. B.; Morigi, G., Dissipation-assisted prethermalization in long-range interacting atomic ensembles, Phys. Rev. Lett., 117, 8, Article 083001 pp., 2016
[157] Hruby, L.; Dogra, N.; Landini, M.; Donner, T.; Esslinger, T., Metastability and avalanche dynamics in strongly correlated gases with long-range interactions, Proc. Natl. Acad. Sci., 115, 13, 3279-3284, 2018
[158] Last, Y., Quantum dynamics and decompositions of singular continuous spectra, J. Funct. Anal., 142, 2, 406-445, 1996, URL https://www.sciencedirect.com/science/article/pii/S002212369690155X · Zbl 0905.47059
[159] Thouless, D., The Anderson model, J. Non-Cryst. Solids, 8-10, 461-469, 1972, amorphous and Liquid Semiconductors
[160] Fröhlich, J.; Spencer, T., Absence of diffusion in the Anderson tight binding model for large disorder or low energy, Comm. Math. Phys., 88, 2, 151-184, 1983, https://cmp/1103922279 · Zbl 0519.60066
[161] Simon, B.; Taylor, M.; Wolff, T., Some rigorous results for the Anderson model, Phys. Rev. Lett., 54, 1589-1592, 1985, URL https://link.aps.org/doi/10.1103/PhysRevLett.54.1589
[162] Scardicchio, A.; Thiery, T., Perturbation theory approaches to Anderson and many-body localization: some lecture notes, 2017, arXiv:1710.01234
[163] Antoni, M.; Ruffo, S., Clustering and relaxation in Hamiltonian long-range dynamics, Phys. Rev. E, 52, 3, 2361-2374, 1995, URL https://link.aps.org/doi/10.1103/PhysRevE.52.2361
[164] Berges, J.; Gasenzer, T., Quantum versus classical statistical dynamics of an ultracold bose gas, Phys. Rev. A, 76, Article 033604 pp., 2007, URL https://link.aps.org/doi/10.1103/PhysRevA.76.033604
[165] Sotiriadis, S.; Cardy, J., Quantum quench in interacting field theory: A self-consistent approximation, Phys. Rev. B, 81, Article 134305 pp., 2010, URL https://link.aps.org/doi/10.1103/PhysRevB.81.134305
[166] Chiocchetta, A.; Gambassi, A.; Diehl, S.; Marino, J., Dynamical crossovers in prethermal critical states, Phys. Rev. Lett., 118, Article 135701 pp., 2017, URL https://link.aps.org/doi/10.1103/PhysRevLett.118.135701
[167] Halimeh, J. C.; Maghrebi, M. F., Quantum aging and dynamical universality in the long-range \(o ( n \to \infty )\) model, Phys. Rev. E, 103, Article 052142 pp., 2021
[168] De Grandi, C.; Polkovnikov, A., Adiabatic perturbation theory: From Landau-Zener problem to quenching through a quantum critical point, (Lecture Notes in Physics, 2010), 75-114 · Zbl 1200.82046
[169] Chandran, A.; Nanduri, A.; Gubser, S. S.; Sondhi, S. L., Equilibration and coarsening in the quantum \(o ( n )\) model at infinite \(n\), Phys. Rev. B, 88, Article 024306 pp., 2013, URL https://link.aps.org/doi/10.1103/PhysRevB.88.024306
[170] Anteneodo, C.; Tsallis, C., Breakdown of exponential sensitivity to initial conditions: Role of the range of interactions, Phys. Rev. Lett., 80, 5313-5316, 1998, URL https://link.aps.org/doi/10.1103/PhysRevLett.80.5313
[171] Gerry, C.; Knight, P., Introductory Quantum Optics, 2005, Cambridge University Press, URL https://books.google.ch/books?id=CgByyoBJJwgC
[172] Dabrowski, R.; Dunne, G. V., Time dependence of adiabatic particle number, Phys. Rev. D, 94, 6, 443, 2016
[173] Reimann, P., Foundation of statistical mechanics under experimentally realistic conditions, Phys. Rev. Lett., 101, Article 190403 pp., 2008, URL https://link.aps.org/doi/10.1103/PhysRevLett.101.190403
[174] Linden, N.; Popescu, S.; Short, A. J.; Winter, A., Quantum mechanical evolution towards thermal equilibrium, Phys. Rev. E, 79, 6, Article 061103 pp., 2009
[175] de Oliveira, T. R.; Charalambous, C.; Jonathan, D.; Lewenstein, M.; Riera, A., Equilibration time scales in closed many-body quantum systems, New J. Phys., 20, 3, Article 033032 pp., 2018, URL arXiv:1704.06646 · Zbl 07853216
[176] Kosterlitz, J. M.; Thouless, D. J.; Jones, R. C., Spherical model of a spin-glass, Phys. Rev. Lett., 36, 1217-1220, 1976, URL https://link.aps.org/doi/10.1103/PhysRevLett.36.1217
[177] Edwards, S. F.; Jones, R. C., The eigenvalue spectrum of a large symmetric random matrix, J. Phys. A Math. General, 9, 10, 1595-1603, 1976 · Zbl 0346.60003
[178] Dell’Anna, L.; Fantoni, S.; Sodano, P.; Trombettoni, A., Critical temperature of non-interacting bose gases on disordered lattices, J. Stat. Mech. Theory Exp., 2008, 11, Article P11012 pp., 2008 · Zbl 1459.82104
[179] Mehta, M. L., (Random Matrices. Random Matrices, Pure and applied mathematics, vol. 142, 2004, Academic Press), URL http://gen.lib.rus.ec/book/index.php?md5=ec21c5f5cbb6f1ff9071a854e06f9b3a · Zbl 1107.15019
[180] Cirano, D.; Irene, G., Random Fields and Spin Glasses: A Field Theory Approach, 2006, Cambridge University Press, URL http://gen.lib.rus.ec/book/index.php?md5=e78d76132a5b94f9fb16c2d9ac1f8828 · Zbl 1138.82030
[181] Short, A. J., Equilibration of quantum systems and subsystems, New J. Phys., 13, 5, Article 053009 pp., 2011 · Zbl 1448.81405
[182] Zener, C., Non-adiabatic crossing of energy levels, Proc. R. Soc. Lond. Ser. A, 137, 833, 696-702, 1932 · JFM 58.1356.02
[183] Damski, B., The simplest quantum model supporting the Kibble-Zurek mechanism of topological defect production: Landau-Zener transitions from a new perspective, Phys. Rev. Lett., 95, 3, 1301, 2005
[184] Boixo, S.; Somma, R. D., Necessary condition for the quantum adiabatic approximation, Phys. Rev. A, 81, Article 032308 pp., 2010, URL https://link.aps.org/doi/10.1103/PhysRevA.81.032308
[185] Born, M.; Fock, V., Beweis des Adiabatensatzes, Z. Phys., 51, 3-4, 165-180, 1928 · JFM 54.0994.03
[186] Zwerger, W., Limited adiabaticity, Nat. Phys., 4, 6, 444-446, 2008
[187] Zurek, W. H., Cosmological experiments in condensed matter systems, Phys. Rep., 276, 4, 177-221, 1996
[188] Dziarmaga, J., Dynamics of a quantum phase transition and relaxation to a steady state, Adv. Phys., 59, 6, 1063-1189, 2010
[189] A. del Campo, W.H. Zurek, Universality of phase transition dynamics: Topological defects from symmetry breaking, Internat. J. Modern Phys. A 29.
[190] Zurek, W. H.; Dorner, U.; Zoller, P., Dynamics of a quantum phase transition, Phys. Rev. Lett., 95, 10, 1301, 2005
[191] Dziarmaga, J., Dynamics of a quantum phase transition: Exact solution of the quantum Ising model, Phys. Rev. Lett., 95, 24, Article 245701 pp., 2005
[192] Dutta, A.; Dutta, A., Probing the role of long-range interactions in the dynamics of a long-range Kitaev chain, Phys. Rev. B, 96, 12, 1301, 2017
[193] Polkovnikov, A., Universal adiabatic dynamics in the vicinity of a quantum critical point, Phys. Rev. B, 72, 16, Article 161201 pp., 2005
[194] Defenu, N.; Morigi, G.; Dell’Anna, L.; Enss, T., Universal dynamical scaling of long-range topological superconductors, Phys. Rev. B, 100, Article 184306 pp., 2019, URL https://link.aps.org/doi/10.1103/PhysRevB.100.184306
[195] Divakaran, U.; Mukherjee, V.; Dutta, A.; Sen, D., Defect production due to quenching through a multicritical point, J. Stat. Mech. Theory Exp., 2009, 2, 02007, 2009, arXiv:0807.3606
[196] Deng, S.; Ortiz, G.; Viola, L., Anomalous nonergodic scaling in adiabatic multicritical quantum quenches, Phys. Rev. B, 80, Article 241109 pp., 2009, URL https://link.aps.org/doi/10.1103/PhysRevB.80.241109
[197] T. Caneva, R. Fazio, G.E. Santoro, Adiabatic quantum dynamics of the Lipkin-Meshkov-Glick model, Phys. Rev. B 78 (10) http://dx.doi.org/10.1103/physrevb.78.104426.
[198] Landau, L.; Lifshitz, E., Mechanics: Volume 1, No. V. 1, 1982, Elsevier Science
[199] Lewis, H. R., Classical and quantum systems with time-dependent Harmonic-Oscillator-type Hamiltonians, Phys. Rev. Lett., 18, 13, 510-512, 1967
[200] Lewis, H. R., Class of exact invariants for classical and quantum time-dependent harmonic oscillators, J. Math. Phys., 9, 11, 1976-1986, 1968 · Zbl 0167.52501
[201] Lewis, H. R.; Riesenfeld, W. B., An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field, J. Math. Phys., 10, 8, 1458-1473, 1969 · Zbl 1317.81109
[202] Botet, R.; Jullien, R.; Pfeuty, P., Size scaling for infinitely coordinated systems, Phys. Rev. Lett., 49, 7, 478-481, 1982
[203] Dusuel, S.; Vidal, J., Finite-size scaling exponents and entanglement in the two-level BCS model, Phys. Rev. A, 71, Article 060304 pp., 2005, URL https://link.aps.org/doi/10.1103/PhysRevA.71.060304
[204] Vidal, J.; Dusuel, S., Finite-size scaling exponents in the Dicke model, Europhys. Lett., 74, 5, 817, 2006
[205] Ribeiro, P.; Vidal, J.; Mosseri, R., Exact spectrum of the Lipkin-Meshkov-Glick model in the thermodynamic limit and finite-size corrections, Phys. Rev. E, 78, 2, 2007, 2008
[206] de Grandi, C.; Polkovnikov, A., Adiabatic perturbation theory: From Landau-Zener problem to quenching through a quantum critical point, (Quantum Quenching, Annealing and Computation, 2010, Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 75-114 · Zbl 1200.82046
[207] Polkovnikov, A.; Gritsev, V., Breakdown of the adiabatic limit in low-dimensional gapless systems, Nat. Phys., 4, 6, 477-481, 2008
[208] Gómez-Ruiz, F. J.; Mayo, J. J.; del Campo, A., Full counting statistics of topological defects after crossing a phase transition, Phys. Rev. Lett., 124, Article 240602 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevLett.124.240602
[209] Vishveshwara, S., Defect or no defect: It’s a toss up, Physics, 13, 98, 2020, URL https://link.aps.org/doi/10.1103/Physics.13.98
[210] Bando, Y.; Susa, Y.; Oshiyama, H.; Shibata, N.; Ohzeki, M.; Gómez-Ruiz, F. J.; Lidar, D. A.; Suzuki, S.; del Campo, A.; Nishimori, H., Probing the universality of topological defect formation in a quantum annealer: Kibble-Zurek mechanism and beyond, Phys. Rev. Res., 2, Article 033369 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevResearch.2.033369
[211] Cui, J.-M.; Gómez-Ruiz, F. J.; Huang, Y.-F.; Li, C.-F.; Guo, G.-C.; del Campo, A., Experimentally testing quantum critical dynamics beyond the Kibble-Zurek mechanism, Commun. Phys., 3, 1, 44, 2020
[212] Gherardini, S.; Buffoni, L.; Defenu, N., Universal defects statistics with strong long-range interactions, 2023, arXiv:2305.11771
[213] Deffner, S.; Lutz, E., Nonequilibrium work distribution of a quantum harmonic oscillator, Phys. Rev. E, 77, Article 021128 pp., 2008, URL https://link.aps.org/doi/10.1103/PhysRevE.77.021128
[214] Gring, M.; Kuhnert, M.; Langen, T.; Kitagawa, T.; Rauer, B.; Schreitl, M.; Mazets, I.; Smith, D. A.; Demler, E.; Schmiedmayer, J., Relaxation and prethermalization in an isolated quantum system, Science, 337, 6100, 1318-1322, 2012, arXiv:https://www.science.org/doi/pdf/10.1126/science.1224953, URL https://www.science.org/doi/abs/10.1126/science.1224953
[215] Langen, T.; Geiger, R.; Kuhnert, M.; Rauer, B.; Schmiedmayer, J., Local emergence of thermal correlations in an isolated quantum many-body system, Nat. Phys., 9, 10, 640-643, 2013
[216] Hild, S.; Fukuhara, T.; Schauß, P.; Zeiher, J.; Knap, M.; Demler, E.; Bloch, I.; Gross, C., Far-from-equilibrium spin transport in Heisenberg quantum magnets, Phys. Rev. Lett., 113, Article 147205 pp., 2014, URL https://link.aps.org/doi/10.1103/PhysRevLett.113.147205
[217] Bordia, P.; Lüschen, H. P.; Hodgman, S. S.; Schreiber, M.; Bloch, I.; Schneider, U., Coupling identical one-dimensional many-body localized systems, Phys. Rev. Lett., 116, Article 140401 pp., 2016, URL https://link.aps.org/doi/10.1103/PhysRevLett.116.140401
[218] Bordia, P.; Lüschen, H.; Schneider, U.; Knap, M.; Bloch, I., Periodically driving a many-body localized quantum system, Nat. Phys., 13, 5, 460-464, 2017
[219] Bordia, P.; Lüschen, H.; Scherg, S.; Gopalakrishnan, S.; Knap, M.; Schneider, U.; Bloch, I., Probing slow relaxation and many-body localization in two-dimensional quasiperiodic systems, Phys. Rev. X, 7, Article 041047 pp., 2017, URL https://link.aps.org/doi/10.1103/PhysRevX.7.041047
[220] Yuzbashyan, E. A.; Tsyplyatyev, O.; Altshuler, B. L., Relaxation and persistent oscillations of the order parameter in fermionic condensates, Phys. Rev. Lett., 96, Article 097005 pp., 2006, URL https://link.aps.org/doi/10.1103/PhysRevLett.96.097005
[221] Barmettler, P.; Punk, M.; Gritsev, V.; Demler, E.; Altman, E., Relaxation of antiferromagnetic order in spin-\( 1 / 2\) chains following a quantum quench, Phys. Rev. Lett., 102, Article 130603 pp., 2009, URL https://link.aps.org/doi/10.1103/PhysRevLett.102.130603
[222] Eckstein, M.; Kollar, M.; Werner, P., Thermalization after an interaction quench in the Hubbard model, Phys. Rev. Lett., 103, Article 056403 pp., 2009, URL https://link.aps.org/doi/10.1103/PhysRevLett.103.056403
[223] Sciolla, B.; Biroli, G., Quantum quenches and off-equilibrium dynamical transition in the infinite-dimensional Bose-Hubbard model, Phys. Rev. Lett., 105, Article 220401 pp., 2010, URL https://link.aps.org/doi/10.1103/PhysRevLett.105.220401
[224] Mitra, A., Time evolution and dynamical phase transitions at a critical time in a system of one-dimensional bosons after a quantum quench, Phys. Rev. Lett., 109, Article 260601 pp., 2012, URL https://link.aps.org/doi/10.1103/PhysRevLett.109.260601
[225] Marino, J.; Eckstein, M.; Foster, M. S.; Rey, A. M., Dynamical phase transitions in the collisionless pre-thermal states of isolated quantum systems: theory and experiments, Rep. Progr. Phys., 85, 11, Article 116001 pp., 2022
[226] Heyl, M.; Polkovnikov, A.; Kehrein, S., Dynamical quantum phase transitions in the transverse-field Ising model, Phys. Rev. Lett., 110, 13, Article 135704 pp., 2013
[227] Heyl, M., Dynamical quantum phase transitions in systems with broken-symmetry phases, Phys. Rev. Lett., 113, Article 205701 pp., 2014, URL https://link.aps.org/doi/10.1103/PhysRevLett.113.205701
[228] Peres, A., Stability of quantum motion in chaotic and regular systems, Phys. Rev. A, 30, 1610-1615, 1984
[229] Gorin, T.; Prosen, T.; Seligman, T. H.; Žnidarič, M., Dynamics of loschmidt echoes and fidelity decay, Phys. Rep., 435, 2-5, 33-156, 2006
[230] Schwinger, J., On gauge invariance and vacuum polarization, Phys. Rev., 82, 664-679, 1951, URL https://link.aps.org/doi/10.1103/PhysRev.82.664 · Zbl 0043.42201
[231] Talkner, P.; Lutz, E.; Hänggi, P., Fluctuation theorems: Work is not an observable, Phys. Rev. E, 75, Article 050102 pp., 2007, URL https://link.aps.org/doi/10.1103/PhysRevE.75.050102
[232] Campisi, M.; Hänggi, P.; Talkner, P., Colloquium: Quantum fluctuation relations: Foundations and applications, Rev. Modern Phys., 83, 771-791, 2011, URL https://link.aps.org/doi/10.1103/RevModPhys.83.771
[233] Palmai, T., Edge exponents in work statistics out of equilibrium and dynamical phase transitions from scattering theory in one-dimensional gapped systems, Phys. Rev. B, 92, Article 235433 pp., 2015, URL https://link.aps.org/doi/10.1103/PhysRevB.92.235433
[234] Gambassi, A.; Silva, A., Large deviations and universality in quantum quenches, Phys. Rev. Lett., 109, Article 250602 pp., 2012, URL https://link.aps.org/doi/10.1103/PhysRevLett.109.250602
[235] Pollmann, F.; Mukerjee, S.; Green, A. G.; Moore, J. E., Dynamics after a sweep through a quantum critical point, Phys. Rev. E, 81, Article 020101 pp., 2010, URL https://link.aps.org/doi/10.1103/PhysRevE.81.020101
[236] Vajna, S.; Dóra, B., Topological classification of dynamical phase transitions, Phys. Rev. B, 91, Article 155127 pp., 2015, URL https://link.aps.org/doi/10.1103/PhysRevB.91.155127
[237] Heyl, M., Scaling and universality at dynamical quantum phase transitions, Phys. Rev. Lett., 115, Article 140602 pp., 2015, URL https://link.aps.org/doi/10.1103/PhysRevLett.115.140602
[238] Halimeh, J. C.; Zauner-Stauber, V., Dynamical phase diagram of quantum spin chains with long-range interactions, Phys. Rev. B, 96, Article 134427 pp., 2017, URL https://link.aps.org/doi/10.1103/PhysRevB.96.134427
[239] Vajna, S.; Dóra, B., Disentangling dynamical phase transitions from equilibrium phase transitions, Phys. Rev. B, 89, Article 161105 pp., 2014, URL https://link.aps.org/doi/10.1103/PhysRevB.89.161105
[240] Schmitt, M.; Kehrein, S., Dynamical quantum phase transitions in the Kitaev honeycomb model, Phys. Rev. B, 92, Article 075114 pp., 2015, URL https://link.aps.org/doi/10.1103/PhysRevB.92.075114
[241] Campbell, S., Criticality revealed through quench dynamics in the Lipkin-Meshkov-Glick model, Phys. Rev. B, 94, Article 184403 pp., 2016, URL https://link.aps.org/doi/10.1103/PhysRevB.94.184403
[242] Weidinger, S. A.; Heyl, M.; Silva, A.; Knap, M., Dynamical quantum phase transitions in systems with continuous symmetry breaking, Phys. Rev. B, 96, Article 134313 pp., 2017, URL https://link.aps.org/doi/10.1103/PhysRevB.96.134313
[243] Lang, J.; Frank, B.; Halimeh, J. C., Dynamical quantum phase transitions: A geometric picture, Phys. Rev. Lett., 121, Article 130603 pp., 2018, URL https://link.aps.org/doi/10.1103/PhysRevLett.121.130603
[244] Abdi, M., Dynamical quantum phase transition in Bose-Einstein condensates, Phys. Rev. B, 100, Article 184310 pp., 2019, URL https://link.aps.org/doi/10.1103/PhysRevB.100.184310
[245] Halimeh, J. C.; Trapin, D.; Van Damme, M.; Heyl, M., Local measures of dynamical quantum phase transitions, Phys. Rev. B, 104, Article 075130 pp., 2021, URL https://link.aps.org/doi/10.1103/PhysRevB.104.075130
[246] Žunkovič, B.; Heyl, M.; Knap, M.; Silva, A., Dynamical quantum phase transitions in spin chains with long-range interactions: Merging different concepts of nonequilibrium criticality, Phys. Rev. Lett., 120, 13, 6, 2018
[247] Uhrich, P.; Defenu, N.; Jafari, R.; Halimeh, J. C., Out-of-equilibrium phase diagram of long-range superconductors, Phys. Rev. B, 101, Article 245148 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevB.101.245148
[248] Jurcevic, P.; Shen, H.; Hauke, P.; Maier, C.; Brydges, T.; Hempel, C.; Lanyon, B. P.; Heyl, M.; Blatt, R.; Roos, C. F., Direct observation of dynamical quantum phase transitions in an interacting many-body system, Phys. Rev. Lett., 119, Article 080501 pp., 2017, URL https://link.aps.org/doi/10.1103/PhysRevLett.119.080501
[249] Žunkovič, B.; Silva, A.; Fabrizio, M., Dynamical phase transitions and loschmidt echo in the infinite-range xy model, Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci., 374, 2069, Article 20150160 pp., 2016 · Zbl 1353.82043
[250] Halimeh, J. C.; Zauner-Stauber, V.; McCulloch, I. P.; de Vega, I.; Schollwöck, U.; Kastner, M., Prethermalization and persistent order in the absence of a thermal phase transition, Phys. Rev. B, 95, Article 024302 pp., 2017, URL https://link.aps.org/doi/10.1103/PhysRevB.95.024302
[251] Lang, J.; Frank, B.; Halimeh, J. C., Concurrence of dynamical phase transitions at finite temperature in the fully connected transverse-field Ising model, Phys. Rev. B, 97, Article 174401 pp., 2018, URL https://link.aps.org/doi/10.1103/PhysRevB.97.174401
[252] Homrighausen, I.; Abeling, N. O.; Zauner-Stauber, V.; Halimeh, J. C., Anomalous dynamical phase in quantum spin chains with long-range interactions, Phys. Rev. B, 96, Article 104436 pp., 2017, URL https://link.aps.org/doi/10.1103/PhysRevB.96.104436
[253] Halimeh, J. C.; Van Damme, M.; Zauner-Stauber, V.; Vanderstraeten, L., Quasiparticle origin of dynamical quantum phase transitions, Phys. Rev. Res., 2, Article 033111 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevResearch.2.033111
[254] Defenu, N.; Enss, T.; Halimeh, J. C., Dynamical criticality and domain-wall coupling in long-range hamiltonians, Phys. Rev. B, 100, Article 014434 pp., 2019, URL https://link.aps.org/doi/10.1103/PhysRevB.100.014434
[255] E. Canovi, P. Werner, M. Eckstein, First-order dynamical phase transitions, Phys. Rev. Lett. 113 (26) http://dx.doi.org/10.1080/physrevlett.113.265702.
[256] F. Andraschko, T. Enss, J. Sirker, Purification and many-body localization in cold atomic gases, Phys. Rev. Lett. 113 (21) http://dx.doi.org/10.1080/physrevlett.113.217201.
[257] Stanley, H. E., Spherical model as the limit of infinite spin dimensionality, Phys. Rev., 176, 718-722, 1968, URL https://link.aps.org/doi/10.1103/PhysRev.176.718
[258] Zauner-Stauber, V.; Halimeh, J. C., Probing the anomalous dynamical phase in long-range quantum spin chains through fisher-zero lines, Phys. Rev. E, 96, Article 062118 pp., 2017, URL https://link.aps.org/doi/10.1103/PhysRevE.96.062118
[259] Mori, T.; Ikeda, T. N.; Kaminishi, E.; Ueda, M., Thermalization and prethermalization in isolated quantum systems: a theoretical overview, J. Phys. B: At. Mol. Opt. Phys., 51, 11, Article 112001 pp., 2018
[260] Sciolla, B.; Biroli, G., Dynamical transitions and quantum quenches in mean-field models, J. Stat. Mech., 2011, 11, Article P11003 pp., 2011 · Zbl 1456.82570
[261] Haake, F.; Kuś, M.; Scharf, R., Classical and quantum chaos for a kicked top, Z. Phys. B Condens. Matter, 65, 3, 381-395, 1987
[262] Haake, F., Quantum Signatures of Chaos, 2010, Springer Berlin Heidelberg · Zbl 1209.81002
[263] Dicke, R. H., Coherence in Spontaneous Radiation Processes, Phys. Rev., 93, 1, 99-110, 1954, URL https://link.aps.org/doi/10.1103/PhysRev.93.99 · Zbl 0055.21702
[264] de Aguiar, M.; Furuya, K.; Lewenkopf, C.; Nemes, M., Chaos in a spin-boson system: Classical analysis, Ann. Physics, 216, 2, 291-312, 1992 · Zbl 0875.58019
[265] Mori, T., Classical ergodicity and quantum eigenstate thermalization: Analysis in fully connected Ising ferromagnets, Phys. Rev. E, 96, Article 012134 pp., 2017, URL https://link.aps.org/doi/10.1103/PhysRevE.96.012134
[266] Valencia-Tortora, R. J.; Kelly, S. P.; Donner, T.; Morigi, G.; Fazio, R.; Marino, J., Crafting the dynamical structure of synchronization by harnessing bosonic multilevel cavity qed, Phys. Rev. Res., 5, Article 023112 pp., 2023
[267] Eckstein, M.; Kollar, M., Nonthermal steady states after an interaction quench in the Falicov-Kimball model, Phys. Rev. Lett., 100, Article 120404 pp., 2008, URL https://link.aps.org/doi/10.1103/PhysRevLett.100.120404
[268] Gambassi, A.; Calabrese, P., Quantum quenches as classical critical films, Europhys. Lett., 95, 6, 66007, 2011
[269] Schiró, M.; Fabrizio, M., Time-dependent mean field theory for quench dynamics in correlated electron systems, Phys. Rev. Lett., 105, Article 076401 pp., 2010
[270] Schiró, M.; Fabrizio, M., Quantum quenches in the Hubbard model: Time-dependent mean-field theory and the role of quantum fluctuations, Phys. Rev. B, 83, Article 165105 pp., 2011
[271] Sandri, M.; Schiró, M.; Fabrizio, M., Linear ramps of interaction in the fermionic Hubbard model, Phys. Rev. B, 86, Article 075122 pp., 2012
[272] Foster, M. S.; Dzero, M.; Gurarie, V.; Yuzbashyan, E. A., Quantum quench in a \(p + i p\) superfluid: Winding numbers and topological states far from equilibrium, Phys. Rev. B, 88, Article 104511 pp., 2013
[273] Yuzbashyan, E. A.; Dzero, M.; Gurarie, V.; Foster, M. S., Quantum quench phase diagrams of an \(s\)-wave BCS-BEC condensate, Phys. Rev. A, 91, Article 033628 pp., 2015, URL https://link.aps.org/doi/10.1103/PhysRevA.91.033628
[274] Maraga, A.; Chiocchetta, A.; Mitra, A.; Gambassi, A., Aging and coarsening in isolated quantum systems after a quench: Exact results for the quantum \(\operatorname{O} ( n )\) model with \(n\to\infty \), Phys. Rev. E, 92, Article 042151 pp., 2015, URL https://link.aps.org/doi/10.1103/PhysRevE.92.042151
[275] Chiocchetta, A.; Tavora, M.; Gambassi, A.; Mitra, A., Short-time universal scaling and light-cone dynamics after a quench in an isolated quantum system in dspatial dimensions, Phys. Rev. B, 94, 13, Article 134311 pp., 2016
[276] Titum, P.; Maghrebi, M. F., Nonequilibrium criticality in quench dynamics of long-range spin models, Phys. Rev. Lett., 125, Article 040602 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevLett.125.040602
[277] Xu, K.; Sun, Z.-H.; Liu, W.; Zhang, Y.-R.; Li, H.; Dong, H.; Ren, W.; Zhang, P.; Nori, F.; Zheng, D., Probing dynamical phase transitions with a superconducting quantum simulator, Sci. Adv., 6, 25, Article eaba4935 pp., 2020, URL https://www.science.org/doi/10.1126/sciadv.aba4935
[278] Caprio, M.; Cejnar, P.; Iachello, F., Excited state quantum phase transitions in many-body systems, Ann. Physics, 323, 5, 1106-1135, 2008 · Zbl 1137.81050
[279] Bastidas, V. M.; Pérez-Fernández, P.; Vogl, M.; Brandes, T., Quantum criticality and dynamical instability in the kicked-top model, Phys. Rev. Lett., 112, Article 140408 pp., 2014, URL https://link.aps.org/doi/10.1103/PhysRevLett.112.140408
[280] Santos, L. F.; Pérez-Bernal, F., Structure of eigenstates and quench dynamics at an excited-state quantum phase transition, Phys. Rev. A, 92, Article 050101 pp., 2015
[281] Santos, L. F.; Távora, M.; Pérez-Bernal, F., Excited-state quantum phase transitions in many-body systems with infinite-range interaction: Localization, dynamics, and bifurcation, Phys. Rev. A, 94, Article 012113 pp., 2016
[282] Pérez-Bernal, F.; Santos, L. F., Effects of excited state quantum phase transitions on system dynamics, Fortschr. Phys., 65, 6-8, Article 1600035 pp., 2017 · Zbl 1371.82065
[283] J. Chávez-Carlos, T.L. Lezama, R.G. Cortiñas, J. Venkatraman, M.H. Devoret, V.S. Batista, F. Pérez-Bernal, L.F. Santos, Spectral kissing and its dynamical consequences in the squeezed Kerr-nonlinear oscillator, arXiv preprint arXiv:2210.07255, http://dx.doi.org/10.48550/arXiv.2210.07255.
[284] Corps, Á. L.; Relaño, A., Dynamical and excited-state quantum phase transitions in collective systems, Phys. Rev. B, 106, 2, Article 024311 pp., 2022
[285] Cejnar, P.; Stránskỳ, P.; Macek, M.; Kloc, M., Excited-state quantum phase transitions, J. Phys. A, 54, 13, Article 133001 pp., 2021 · Zbl 1519.82077
[286] Curtright, T. L.; Fairlie, D. B.; Zachos, C. K., A concise treatise on quantum mechanics in phase space, World Sci., 2014 · Zbl 1291.81003
[287] Polkovnikov, A., Quantum mechanics in phase space, Ann. Phys., 325, 1790, 2010, URL https://link.aps.org/doi/10.1103/PhysRevB.74.144423
[288] Richter, K.; Urbina, J. D.; Tomsovic, S., Semiclassical roots of universality in many-body quantum chaos, J. Phys. A, 55, 45, Article 453001 pp., 2022 · Zbl 1519.81239
[289] Steel, M. J.; Olsen, M. K.; Plimak, L. I.; Drummond, P. D.; Tan, S. M.; Collett, M. J.; Walls, D. F.; Graham, R., Dynamical quantum noise in trapped Bose-Einstein condensates, Phys. Rev. A, 58, 6, 4824-4835, 1998
[290] Blakie, P.; Bradley, A.; Davis, M.; Ballagh, R.; Gardiner, C., Dynamics and statistical mechanics of ultra-cold bose gases using c-field techniques, Adv. Phys., 57, 5, 363-455, 2008
[291] Wootters, W. K., A wigner-function formulation of finite-state quantum mechanics, Ann. Physics, 176, 1, 1-21, 1987
[292] Wurtz, J.; Polkovnikov, A.; Sels, D., Cluster truncated wigner approximation in strongly interacting systems, Ann. Physics, 395, 341-365, 2018, URL http://www.sciencedirect.com/science/article/pii/S0003491618301647 · Zbl 1394.82013
[293] Pucci, L.; Roy, A.; Kastner, M., Simulation of quantum spin dynamics by phase space sampling of Bogoliubov-Born-Green-Kirkwood-Yvon trajectories, Phys. Rev. B, 93, Article 174302 pp., 2016, URL https://link.aps.org/doi/10.1103/PhysRevB.93.174302
[294] Piñeiro Orioli, A.; Safavi-Naini, A.; Wall, M. L.; Rey, A. M., Nonequilibrium dynamics of spin-boson models from phase-space methods, Phys. Rev. A, 96, Article 033607 pp., 2017, URL https://link.aps.org/doi/10.1103/PhysRevA.96.033607
[295] Acevedo, O. L.; Safavi-Naini, A.; Schachenmayer, J.; Wall, M. L.; Nandkishore, R.; Rey, A. M., Exploring many-body localization and thermalization using semiclassical methods, Phys. Rev. A, 96, Article 033604 pp., 2017, URL https://link.aps.org/doi/10.1103/PhysRevA.96.033604
[296] Mori, T., Prethermalization in the transverse-field Ising chain with long-range interactions, J. Phys. A, 52, 5, Article 054001 pp., 2019 · Zbl 1422.82017
[297] Pappalardi, S.; Russomanno, A.; Žunkovič, B.; Iemini, F.; Silva, A.; Fazio, R., Scrambling and entanglement spreading in long-range spin chains, Phys. Rev. B, 98, Article 134303 pp., 2018, URL https://link.aps.org/doi/10.1103/PhysRevB.98.134303
[298] Khasseh, R.; Russomanno, A.; Schmitt, M.; Heyl, M.; Fazio, R., Discrete truncated wigner approach to dynamical phase transitions in Ising models after a quantum quench, Phys. Rev. B, 102, Article 014303 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevB.102.014303
[299] Piccitto, G.; Silva, A., Crossover from fast to slow dynamics in a long range interacting Ising chain, J. Stat. Mech. Theory Exp., 2019, 9, Article 094017 pp., 2019 · Zbl 1456.81490
[300] Sajna, A. S.; Polkovnikov, A., Semiclassical dynamics of a disordered two-dimensional Hubbard model with long-range interactions, Phys. Rev. A, 102, 3, Article 033338 pp., 2020
[301] Kelly, S.; Timmermans, E.; Marino, J.; Tsai, S.-W., Stroboscopic aliasing in long-range interacting quantum systems, SciPost Phys. Core, 4, 3, 021, 2021
[302] Lerose, A.; Pappalardi, S., Bridging entanglement dynamics and chaos in semiclassical systems, Phys. Rev. A, 102, Article 032404 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevA.102.032404
[303] Cencini, M.; Cecconi, F.; Vulpiani, A., Chaos: From Simple Models To Complex Systems, 2010, World Scientific · Zbl 1209.37001
[304] S. Dusuel, J. Vidal, Finite-Size Scaling Exponents of the Lipkin-Meshkov-Glick Model, arXiv.org arXiv:cond-mat, http://dx.doi.org/10.1103/PhysRevB.71.224420.
[305] Larkin, A.; Ovchinnikov, Y. N., Quasiclassical method in the theory of superconductivity, Sov. Phys.—JETP, 28, 6, 1200-1205, 1969, URL https://ui.adsabs.harvard.edu/abs/1969JETP.28.1200L/abstract
[306] A. Kitaev, Talk given at the fundamental physics prize symposium, talk, https://www.youtube.com/watch?v=OQ9qN8j7EZI.
[307] Maldacena, J.; Shenker, S. H.; Stanford, D., A bound on chaos, J. High Energy Phys., 8, 2016 · Zbl 1390.81388
[308] N. Tsuji, T. Shitara, M. Ueda, Bound on the exponential growth rate of out-of-time-ordered correlators, Phys. Rev. E 98 (1) http://dx.doi.org/10.1103/physreve.98.012216.
[309] Pappalardi, S.; Foini, L.; Kurchan, J., Quantum bounds and fluctuation-dissipation relations, SciPost Phys., 12, 4, 130, 2022
[310] Sachdev, S.; Ye, J., Gapless spin-fluid ground state in a random quantum Heisenberg magnet, Phys. Rev. Lett., 70, 21, 3339, 1993
[311] Hummel, Q.; Geiger, B.; Urbina, J. D.; Richter, K., Reversible quantum information spreading in many-body systems near criticality, Phys. Rev. Lett., 123, Article 160401 pp., 2019, URL https://link.aps.org/doi/10.1103/PhysRevLett.123.160401
[312] Pilatowsky-Cameo, S.; Chávez-Carlos, J.; Bastarrachea-Magnani, M. A.; Stránský, P.; Lerma-Hernández, S.; Santos, L. F.; Hirsch, J. G., Positive quantum lyapunov exponents in experimental systems with a regular classical limit, Phys. Rev. E, 101, Article 010202 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevE.101.010202
[313] Kidd, R. A.; Safavi-Naini, A.; Corney, J. F., Saddle-point scrambling without thermalization, Phys. Rev. A, 103, Article 033304 pp., 2021, URL https://link.aps.org/doi/10.1103/PhysRevA.103.033304
[314] Li, Z.; Colombo, S.; Shu, C.; Velez, G.; Pilatowsky-Cameo, S.; Schmied, R.; Choi, S.; Lukin, M.; Pedrozo-Peñafiel, E.; Vuletić, V., Improving metrology with quantum scrambling, Science, 380, 6652, 1381-1384, 2023
[315] Xu, T.; Scaffidi, T.; Cao, X., Does scrambling equal chaos?, Phys. Rev. Lett., 124, Article 140602 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevLett.124.140602
[316] Swingle, B.; Bentsen, G.; Schleier-Smith, M.; Hayden, P., Measuring the scrambling of quantum information, Phys. Rev. A, 94, 4, Article 040302 pp., 2016
[317] Seshadri, A.; Madhok, V.; Lakshminarayan, A., Tripartite mutual information, entanglement, and scrambling in permutation symmetric systems with an application to quantum chaos, Phys. Rev. E, 98, 5, Article 052205 pp., 2018
[318] Sieberer, L. M.; Olsacher, T.; Elben, A.; Heyl, M.; Hauke, P.; Haake, F.; Zoller, P., Digital quantum simulation, trotter errors, and quantum chaos of the kicked top, npj Quantum Inf., 5, 1, 78, 2019
[319] Yin, C.; Lucas, A., Quantum operator growth bounds for kicked tops and semiclassical spin chains, Phys. Rev. A, 103, 4, Article 042414 pp., 2021, URL https://journals.aps.org/pra/pdf/10.1103/PhysRevA.103.042414
[320] N.D. Varikuti, V. Madhok, Out-of-time ordered correlators in kicked coupled tops and the role of conserved quantities in information scrambling, arXiv preprint arXiv:2201.05789, http://dx.doi.org/10.48550/arXiv.2201.05789.
[321] Omanakuttan, S.; Chinni, K.; Blocher, P. D.; Poggi, P. M., Scrambling and quantum chaos indicators from long-time properties of operator distributions, Phys. Rev. A, 107, Article 032418 pp., 2023, URL https://link.aps.org/doi/10.1103/PhysRevA.107.032418
[322] Pappalardi, S.; Kurchan, J., Quantum bounds on the generalized lyapunov exponents, Entropy, 25, 2, 246, 2023, URL https://www.mdpi.com/1099-4300/25/2/246
[323] Chávez-Carlos, J.; López-del Carpio, B.; Bastarrachea-Magnani, M. A.; Stránský, P.; Lerma-Hernández, S.; Santos, L. F.; Hirsch, J. G., Quantum and classical lyapunov exponents in atom-field interaction systems, Phys. Rev. Lett., 122, Article 024101 pp., 2019, URL https://link.aps.org/doi/10.1103/PhysRevLett.122.024101
[324] Lewis-Swan, R.; Safavi-Naini, A.; Bollinger, J. J.; Rey, A. M., Unifying scrambling, thermalization and entanglement through measurement of fidelity out-of-time-order correlators in the Dicke model, Nature Commun., 10, 1, 1581, 2019
[325] Buijsman, W.; Gritsev, V.; Sprik, R., Nonergodicity in the anisotropic Dicke model, Phys. Rev. Lett., 118, Article 080601 pp., 2017, URL https://link.aps.org/doi/10.1103/PhysRevLett.118.080601
[326] Alavirad, Y.; Lavasani, A., Scrambling in the Dicke model, Phys. Rev. A, 99, Article 043602 pp., 2019, URL https://link.aps.org/doi/10.1103/PhysRevA.99.043602
[327] Craps, B.; De Clerck, M.; Janssens, D.; Luyten, V.; Rabideau, C., Lyapunov growth in quantum spin chains, Phys. Rev. B, 101, 17, Article 174313 pp., 2020, URL https://journals.aps.org/prb/abstract/10.1103/PhysRevB.101.174313
[328] Z. Qi, T. Scaffidi, X. Cao, Surprises in the deep hilbert space of all-to-all systems: From super-exponential scrambling to slow entanglement growth, arXiv preprint arXiv:2304.11138, http://dx.doi.org/10.48550/arXiv.2304.11138.
[329] S. Pappalardi, et al., Entanglement Dynamics and Chaos in Long-Range Quantum Systems, (Ph.D. thesis), URL.
[330] M. Mezei, D. Stanford, On entanglement spreading in chaotic systems, J. High Energy Phys. 2017 (5) http://dx.doi.org/10.1007/jhep05(2017)065. · Zbl 1380.81349
[331] P. Calabrese, Entanglement spreading in non-equilibrium integrable systems, arXiv:2008.11080, URL https://arxiv.org/abs/2008.11080.
[332] Abanin, D. A.; Altman, E.; Bloch, I.; Serbyn, M., Colloquium: Many-body localization, thermalization, and entanglement, Rev. Modern Phys., 91, Article 021001 pp., 2019, URL https://link.aps.org/doi/10.1103/RevModPhys.91.021001
[333] Zurek, W. H.; Paz, J. P., Quantum chaos: a decoherent definition, Physica D, 83, 1-3, 300-308, 1995 · Zbl 1194.81111
[334] Vidal J., D. S.; Barthel, T., Entanglement entropy in collective models, J. Stat. Mech. Theory Exp., 2007, 01, Article P01015 pp., 2007
[335] Bianchi, E.; Hackl, L.; Yokomizo, N., Linear growth of the entanglement entropy and the Kolmogorov-Sinai rate, J. High Energy Phys., 2018, 3, 25, 2018 · Zbl 1388.81431
[336] Hackl, L.; Bianchi, E.; Modak, R.; Rigol, M., Entanglement production in bosonic systems: Linear and logarithmic growth, Phys. Rev. A, 97, Article 032321 pp., 2018, URL https://link.aps.org/doi/10.1103/PhysRevA.97.032321
[337] Barthel, T.; Chung, M.-C.; Schollwöck, U., Entanglement scaling in critical two-dimensional fermionic and bosonic systems, Phys. Rev. A, 74, Article 022329 pp., 2006, URL https://link.aps.org/doi/10.1103/PhysRevA.74.022329
[338] Zurek, W. H.; Paz, J. P., Decoherence, chaos, and the second law, Phys. Rev. Lett., 72, 16, 2508-2511, 1994
[339] Zarum, R.; Sarkar, S., Quantum-classical correspondence of entropy contours in the transition to chaos, Phys. Rev. E, 57, 5, 5467-5471, 1998, URL https://link.aps.org/doi/10.1103/PhysRevE.57.5467
[340] Miller, P. A.; Sarkar, S., Signatures of chaos in the entanglement of two coupled quantum kicked tops, Phys. Rev. E, 60, 2, 1542-1550, 1999, URL https://link.aps.org/doi/10.1103/PhysRevE.60.1542
[341] Chaudhury, S.; Smith, A.; Anderson, B. E.; Ghose, S.; Jessen, P. S., Quantum signatures of chaos in a kicked top, Nature, 461, 7265, 768-771, 2009, number: 7265 Publisher: Nature Publishing Group. URL https://www.nature.com/articles/nature08396/
[342] Ghose, S.; Stock, R.; Jessen, P.; Lal, R.; Silberfarb, A., Chaos, entanglement, and decoherence in the quantum kicked top, Phys. Rev. A, 78, 4, Article 042318 pp., 2008, URL https://link.aps.org/doi/10.1103/PhysRevA.78.042318 · Zbl 1255.81163
[343] Piga, A.; Lewenstein, M.; Quach, J. Q., Quantum chaos and entanglement in ergodic and nonergodic systems, Phys. Rev. E, 99, 3, Article 032213 pp., 2019, URL https://link.aps.org/doi/10.1103/PhysRevE.99.032213
[344] Wang, X.; Ghose, S.; Sanders, B. C.; Hu, B., Entanglement as a signature of quantum chaos, Phys. Rev. E, 70, 1, Article 016217 pp., 2004, URL https://link.aps.org/doi/10.1103/PhysRevE.70.016217
[345] Trail, C. M.; Madhok, V.; Deutsch, I. H., Entanglement and the generation of random states in the quantum chaotic dynamics of kicked coupled tops, Phys. Rev. E, 78, 4, Article 046211 pp., 2008, URL https://link.aps.org/doi/10.1103/PhysRevE.78.046211
[346] Ghose, S.; Sanders, B., Entanglement dynamics in chaotic systems, Phys. Rev. A, 70, 6, Article 062315 pp., 2004, URL https://link.aps.org/doi/10.1103/PhysRevA.70.062315
[347] Kumari, M.; Ghose, S., Untangling entanglement and chaos, Phys. Rev. A, 99, 4, Article 042311 pp., 2019, URL https://link.aps.org/doi/10.1103/PhysRevA.99.042311
[348] Lombardi, M.; Matzkin, A., Entanglement and chaos in the kicked top, Phys. Rev. E, 83, 1, Article 016207 pp., 2011, URL https://link.aps.org/doi/10.1103/PhysRevE.83.016207
[349] Stamatiou, G.; Ghikas, D. P., Quantum entanglement dependence on bifurcations and scars in non-autonomous systems. The case of quantum kicked top, Phys. Lett. A, 368, 3-4, 206-214, 2007, URL https://linkinghub.elsevier.com/retrieve/pii/S0375960107005166 · Zbl 1209.81022
[350] V. Madhok, C.A. Riofrio, S. Ghose, I.H. Deutsch, Information gain in tomography a quantum signature of chaos, Phys. Rev. Lett. 112 (1) http://dx.doi.org/10.1103/physrevlett.112.014102.
[351] L.J. Fiderer, D. Braun, Quantum metrology with quantum-chaotic sensors, Nature Commun. 9 (1) http://dx.doi.org/10.1038/s41467-018-03623-z.
[352] Furuya, K.; Nemes, M. C.; Pellegrino, G. Q., Quantum Dynamical Manifestation of Chaotic Behavior in the Process of Entanglement, Phys. Rev. Lett., 80, 25, 5524-5527, 1998, URL https://link.aps.org/doi/10.1103/PhysRevLett.80.5524
[353] Lambert, N.; Emary, C.; Brandes, T., Entanglement and the Phase Transition in Single-Mode Superradiance, Phys. Rev. Lett., 92, 7, Article 073602 pp., 2004, URL https://link.aps.org/doi/10.1103/PhysRevLett.92.073602
[354] Lóbez, C.; Relaño, A., Entropy, chaos and excited-state quantum phase transitions in the Dicke model, Phys. Rev. E, 94, 1, Article 012140 pp., 2016, arXiv:1604.06334. URL http://arxiv.org/abs/1604.06334
[355] S. Sinha, S. Sinha, Chaos, non-ergodic states and quantum scars in Bose-Josephson junction coupled to a bosonic mode, arXiv:1912.06593 URL http://arxiv.org/abs/1912.06593.
[356] Song, L.; Ma, J.; Yan, D.; Wang, X., Quantum Fisher information and chaos in the Dicke model, Eur. Phys. J. D, 66, 8, 201, 2012, URL http://link.springer.com/10.1140/epjd/e2012-30197-x
[357] Zhang, Y.-Y.; Chen, X.-Y., Large-N scaling behavior of the quantum fisher information in the Dicke model, Eur. Phys. J. D, 69, 11, 241, 2015, arXiv:1503.03953. URL http://arxiv.org/abs/1503.03953
[358] Bhattacharya, U.; Dutta, A., Emergent topology and dynamical quantum phase transitions in two-dimensional closed quantum systems, Phys. Rev. B, 96, Article 014302 pp., 2017, URL https://link.aps.org/doi/10.1103/PhysRevB.96.014302
[359] Mirkhalaf, S. S.; Smerzi, A., Entanglement detection in a coupled atom-field system via quantum Fisher information, Phys. Rev. A, 95, 2, Article 022302 pp., 2017, URL https://link.aps.org/doi/10.1103/PhysRevA.95.022302
[360] Gietka, K.; Chwedeńczuk, J.; Wasak, T.; Piazza, F., Multipartite-entanglement dynamics in Regular-to-Ergodic Transition: a Quantum-Fisher-Information approach, Phys. Rev. B, 99, 6, Article 064303 pp., 2019, arXiv:1812.01013. URL http://arxiv.org/abs/1812.01013
[361] Ma, J.; Wang, X.; Sun, C.-P.; Nori, F., Quantum spin squeezing, Phys. Rep., 509, 2-3, 89-165, 2011, URL https://www.sciencedirect.com/science/article/pii/S0370157311002201
[362] Pezzè, L.; Smerzi, A.; Oberthaler, M. K.; Schmied, R.; Treutlein, P., Quantum metrology with nonclassical states of atomic ensembles, Rev. Modern Phys., 90, Article 035005 pp., 2018, URL https://link.aps.org/doi/10.1103/RevModPhys.90.035005
[363] Kitagawa, M.; Ueda, M., Squeezed spin states, Phys. Rev. A, 47, 5138-5143, 1993
[364] Wineland, D. J.; Bollinger, J. J.; Itano, W. M.; Heinzen, D. J., Squeezed atomic states and projection noise in spectroscopy, Phys. Rev. A, 50, 67-88, 1994
[365] Sorensen, A. S.; Molmer, K., Entanglement and extreme spin squeezing, Phys. Rev. Lett., 86, 4431-4434, 2001, URL https://link.aps.org/doi/10.1103/PhysRevLett.86.4431
[366] Pezzé, L.; Smerzi, A., Entanglement, nonlinear dynamics, and the Heisenberg limit, Phys. Rev. Lett., 102, Article 100401 pp., 2009, URL https://link.aps.org/doi/10.1103/PhysRevLett.102.100401
[367] T. Roscilde, T. Comparin, F. Mezzacapo, Entangling dynamics from effective rotor/spin-wave separation in u (1)-symmetric quantum spin models, arXiv preprint arXiv:2302.09271, http://dx.doi.org/10.48550/arXiv.2302.09271.
[368] T. Roscilde, T. Comparin, F. Mezzacapo, Rotor/spin-wave theory for quantum spin models with u (1) symmetry, arXiv preprint arXiv:2303.00380, http://dx.doi.org/10.48550/arXiv.2303.00380.
[369] Gronwall, T. H., Note on the derivatives with respect to a parameter of the solutions of a system of differential equations, Ann. of Math., 292-296, 1919 · JFM 47.0399.02
[370] Blanes, S.; Casas, F.; Oteo, J.; Ros, J., The magnus expansion and some of its applications, Phys. Rep., 470, 5, 151-238, 2009, URL http://www.sciencedirect.com/science/article/pii/S0370157308004092
[371] Piccitto, G.; Žunkovič, B.; Silva, A., Dynamical phase diagram of a quantum Ising chain with long-range interactions, Phys. Rev. B, 100, Article 180402 pp., 2019, URL https://link.aps.org/doi/10.1103/PhysRevB.100.180402
[372] Smale, S.; He, P.; Olsen, B. A.; Jackson, K. G.; Sharum, H.; Trotzky, S.; Marino, J.; Rey, A. M.; Thywissen, J. H., Observation of a transition between dynamical phases in a quantum degenerate fermi gas, Sci. Adv., 5, 8, Article eaax1568 pp., 2019, URL https://www.science.org/doi/10.1126/sciadv.aax1568
[373] Zhou, L.; Kong, J.; Lan, Z.; Zhang, W., Dynamical quantum phase transitions in a spinor Bose-Einstein condensate and criticality enhanced quantum sensing, Phys. Rev. Res., 5, Article 013087 pp., 2023, URL https://link.aps.org/doi/10.1103/PhysRevResearch.5.013087
[374] Lewis-Swan, R. J.; Muleady, S. R.; Barberena, D.; Bollinger, J. J.; Rey, A. M., Characterizing the dynamical phase diagram of the Dicke model via classical and quantum probes, Phys. Rev. Res., 3, Article L022020 pp., 2021, URL https://link.aps.org/doi/10.1103/PhysRevResearch.3.L022020
[375] Kim, J.; Altman, E.; Cao, X., Dirac fast scramblers, Phys. Rev. B, 103, 8, Article L081113 pp., 2021, URL https://journals.aps.org/prb/pdf/10.1103/PhysRevB.103.L081113
[376] Scaffidi, T.; Altman, E., Chaos in a classical limit of the Sachdev-Ye-Kitaev model, Phys. Rev. B, 100, 15, Article 155128 pp., 2019
[377] Marino, J.; Rey, A. M., Cavity-QED simulator of slow and fast scrambling, Phys. Rev. A, 99, 5, Article 051803 pp., 2019, URL https://link.aps.org/doi/10.1103/PhysRevA.99.051803
[378] Davidson, S. M.; Sels, D.; Polkovnikov, A., Semiclassical approach to dynamics of interacting fermions, Ann. Physics, 384, 128-141, 2017 · Zbl 1370.82027
[379] Pappalardi, S.; Polkovnikov, A.; Silva, A., Quantum echo dynamics in the Sherrington-Kirkpatrick model, SciPost Phys., 9, 2, 021, 2020
[380] L. Correale, A. Polkovnikov, M. Schirò, A. Silva, Probing semi-classical chaos in the spherical \(p\)-spin glass model, arXiv preprint arXiv:2303.15393.
[381] Sekino, Y.; Susskind, L., Fast scramblers, J. High Energy Phys., 2008, 10, 065, 2008
[382] Kukuljan, I.; Grozdanov, S.; Prosen, T., Weak quantum chaos, Phys. Rev. B, 96, Article 060301 pp., 2017, URL https://link.aps.org/doi/10.1103/PhysRevB.96.060301
[383] Kuwahara, T.; Saito, K., Absence of Fast Scrambling in Thermodynamically Stable Long-Range Interacting Systems, Phys. Rev. Lett., 126, 3, Article 030604 pp., 2021, URL https://link.aps.org/doi/10.1103/PhysRevLett.126.030604
[384] Wanisch, D.; Arias Espinoza, J. D.; Fritzsche, S., Information scrambling and the correspondence of entanglement dynamics and operator dynamics in systems with nonlocal interactions, Phys. Rev. B, 107, 20, Article 205127 pp., 2023, URL https://link.aps.org/doi/10.1103/PhysRevB.107.205127
[385] Belyansky, R.; Bienias, P.; Kharkov, Y. A.; Gorshkov, A. V.; Swingle, B., Minimal Model for Fast Scrambling, Phys. Rev. Lett., 125, 13, Article 130601 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevLett.125.130601
[386] Li, Z.; Choudhury, S.; Liu, W. V., Fast scrambling without appealing to holographic duality, Phys. Rev. Res., 2, 4, Article 043399 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevResearch.2.043399
[387] Bentsen, G.; Gu, Y.; Lucas, A., Fast scrambling on sparse graphs, Proc. Natl. Acad. Sci., 116, 14, 6689-6694, 2019, arXiv:https://www.pnas.org/content/116/14/6689.full.pdf, URL https://www.pnas.org/content/116/14/6689 · Zbl 1416.81038
[388] Nahum, A.; Vijay, S.; Haah, J., Operator spreading in random unitary circuits, Phys. Rev. X, 8, 2, Article 021014 pp., 2018, URL https://journals.aps.org/prx/pdf/10.1103/PhysRevX.8.021014
[389] von Keyserlingk, C. W.; Rakovszky, T.; Pollmann, F.; Sondhi, S. L., Operator hydrodynamics, otocs, and entanglement growth in systems without conservation laws, Phys. Rev. X, 8, Article 021013 pp., 2018, URL https://link.aps.org/doi/10.1103/PhysRevX.8.021013
[390] Shenker, S. H.; Stanford, D., Black holes and the butterfly effect, J. High Energy Phys., 2014, 3, 1-25, 2014, URL https://link.springer.com/article/10.1007/JHEP03(2014)067 · Zbl 1333.83111
[391] Luitz, D. J.; Bar Lev, Y., Emergent locality in systems with power-law interactions, Phys. Rev. A, 99, Article 010105 pp., 2019, URL https://link.aps.org/doi/10.1103/PhysRevA.99.010105
[392] Colmenarez, L.; Luitz, D. J., Lieb-Robinson bounds and out-of-time order correlators in a long-range spin chain, Phys. Rev. Res., 2, 4, Article 043047 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevResearch.2.043047
[393] Lin, C.-J.; Motrunich, O. I., Out-of-time-ordered correlators in short-range and long-range hard-core boson models and in the Luttinger-liquid model, Phys. Rev. B, 98, 13, Article 134305 pp., 2018, URL https://link.aps.org/doi/10.1103/PhysRevB.98.134305
[394] Chen, X.; Zhou, T., Quantum chaos dynamics in long-range power law interaction systems, Phys. Rev. B, 100, 6, Article 064305 pp., 2019, URL https://link.aps.org/doi/10.1103/PhysRevB.100.064305
[395] Zhou, T.; Xu, S.; Chen, X.; Guo, A.; Swingle, B., Operator Lévy Flight: Light Cones in Chaotic Long-Range Interacting Systems, Phys. Rev. Lett., 124, 18, Article 180601 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevLett.124.180601
[396] T. Zhou, A.Y. Guo, S. Xu, X. Chen, B. Swingle, Hydrodynamic theory of scrambling in chaotic long-range interacting systems, Phys. Rev. B 107 (1) http://dx.doi.org/10.1103/PhysRevB.107.014201, URL.
[397] M. Foss-Feig, Z.-X. Gong, A.V. Gorshkov, C.W. Clark, Entanglement and spin-squeezing without infinite-range interactions, arXiv preprint arXiv:1612.07805, http://dx.doi.org/10.48550/arXiv.1612.07805.
[398] Perlin, M. A.; Qu, C.; Rey, A. M., Spin squeezing with short-range spin-exchange interactions, Phys. Rev. Lett., 125, Article 223401 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevLett.125.223401
[399] Comparin, T.; Mezzacapo, F.; Roscilde, T., Robust spin squeezing from the tower of states of u(1)-symmetric spin hamiltonians, Phys. Rev. A, 105, Article 022625 pp., 2022
[400] Comparin, T.; Mezzacapo, F.; Roscilde, T., Multipartite entangled states in dipolar quantum simulators, Phys. Rev. Lett., 129, Article 150503 pp., 2022
[401] G. Bornet, G. Emperauger, C. Chen, B. Ye, M. Block, M. Bintz, J.A. Boyd, D. Barredo, T. Comparin, F. Mezzacapo, et al. Scalable spin squeezing in a dipolar rydberg atom array, arXiv preprint arXiv:2303.08053, http://dx.doi.org/10.48550/arXiv.2303.08053.
[402] M. Block, B. Ye, B. Roberts, S. Chern, W. Wu, Z. Wang, L. Pollet, E.J. Davis, B.I. Halperin, N.Y. Yao, A universal theory of spin squeezing, arXiv preprint arXiv:2301.09636, http://dx.doi.org/10.48550/arXiv.2301.09636.
[403] Hauke, P.; Heyl, M.; Tagliacozzo, L.; Zoller, P., Measuring multipartite entanglement through dynamic susceptibilities, Nat. Phys., 12, 8, 778-782, 2016
[404] Serbyn, M.; Papić, Z.; Abanin, D. A., Universal slow growth of entanglement in interacting strongly disordered systems, Phys. Rev. Lett., 110, Article 260601 pp., 2013, URL https://link.aps.org/doi/10.1103/PhysRevLett.110.260601
[405] Bukov, M.; D’Alessio, L.; Polkovnikov, A., Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to floquet engineering, Adv. Phys., 64, 2, 139-226, 2015
[406] Russomanno, A.; Iemini, F.; Dalmonte, M.; Fazio, R., Floquet time crystal in the Lipkin-Meshkov-Glick model, Phys. Rev. B, 95, Article 214307 pp., 2017, URL https://link.aps.org/doi/10.1103/PhysRevB.95.214307
[407] Kyprianidis, A.; Machado, F.; Morong, W.; Becker, P.; Collins, K. S.; Else, D. V.; Feng, L.; Hess, P. W.; Nayak, C.; Pagano, G., Observation of a prethermal discrete time crystal, Science, 372, 6547, 1192-1196, 2021
[408] Mori, T.; Kuwahara, T.; Saito, K., Rigorous bound on energy absorption and generic relaxation in periodically driven quantum systems, Phys. Rev. Lett., 116, Article 120401 pp., 2016, URL https://link.aps.org/doi/10.1103/PhysRevLett.116.120401
[409] Abanin, D. A.; De Roeck, W.; Ho, W. W.; Huveneers, F.m.c., Effective hamiltonians, prethermalization, and slow energy absorption in periodically driven many-body systems, Phys. Rev. B, 95, Article 014112 pp., 2017, URL https://link.aps.org/doi/10.1103/PhysRevB.95.014112
[410] Machado, F.; Else, D. V.; Kahanamoku-Meyer, G. D.; Nayak, C.; Yao, N. Y., Long-range prethermal phases of nonequilibrium matter, Phys. Rev. X, 10, Article 011043 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevX.10.011043
[411] Russomanno, A.; Fazio, R.; Santoro, G. E., Thermalization in a periodically driven fully connected quantum Ising ferromagnet, Europhys. Lett., 110, 3, 37005, 2015
[412] Das, A.; Sengupta, K.; Sen, D.; Chakrabarti, B. K., Infinite-range Ising ferromagnet in a time-dependent transverse magnetic field: Quench and ac dynamics near the quantum critical point, Phys. Rev. B, 74, Article 144423 pp., 2006, URL https://link.aps.org/doi/10.1103/PhysRevB.74.144423
[413] J. Pöschel, A lecture on the classical kam theorem, arXiv:0908.2234, URL https://arxiv.org/abs/0908.2234.
[414] Gutzwiller, M. C., Chaos in Classical and Quantum Mechanics, 2013, Springer Science & Business Media
[415] Tomkovic, J.; Muessel, W.; Strobel, H.; Löck, S.; Schlagheck, P.; Ketzmerick, R.; Oberthaler, M. K., Experimental observation of the Poincaré-Birkhoff scenario in a driven many-body quantum system, Phys. Rev. A, 95, Article 011602 pp., 2017, URL https://link.aps.org/doi/10.1103/PhysRevA.95.011602
[416] Kapitza, P. L., Dynamical stability of a pendulum when its point of suspension vibrates, and pendulum with a vibrating suspension, Collected Papers of PL Kapitza, 2, 714-737, 1965, URL https://www.sciencedirect.com/book/9780080109732/collected-papers-of-p-l-kapitza
[417] Senko, C.; Richerme, P.; Smith, J.; Lee, A.; Cohen, I.; Retzker, A.; Monroe, C., Realization of a quantum integer-spin chain with controllable interactions, Phys. Rev. X, 5, Article 021026 pp., 2015, URL https://link.aps.org/doi/10.1103/PhysRevX.5.021026
[418] Thouless, D. J., Long-range order in one-dimensional Ising systems, Phys. Rev., 187, 2, 732-733, 1969
[419] Russomanno, A.; Silva, A.; Santoro, G. E., Periodic steady regime and interference in a periodically driven quantum system, Phys. Rev. Lett., 109, Article 257201 pp., 2012, URL https://link.aps.org/doi/10.1103/PhysRevLett.109.257201
[420] Bastidas, V. M.; Emary, C.; Regler, B.; Brandes, T., Nonequilibrium quantum phase transitions in the Dicke model, Phys. Rev. Lett., 108, 4, Article 043003 pp., 2012
[421] Benito, M.; Gómez-León, A.; Bastidas, V. M.; Brandes, T.; Platero, G., Floquet engineering of long-range \(p\)-wave superconductivity, Phys. Rev. B, 90, Article 205127 pp., 2014, URL https://link.aps.org/doi/10.1103/PhysRevB.90.205127
[422] D’Alessio, L.; Rigol, M., Long-time behavior of isolated periodically driven interacting lattice systems, Phys. Rev. X, 4, Article 041048 pp., 2014, URL https://link.aps.org/doi/10.1103/PhysRevX.4.041048
[423] Shirai, T.; Thingna, J.; Mori, T.; Denisov, S.; Hänggi, P.; Miyashita, S., Effective Floquet-Gibbs states for dissipative quantum systems, New J. Phys., 18, 5, Article 053008 pp., 2016, URL https://iopscience.iop.org/article/10.1088/1367-2630/18/5/053008
[424] Lazarides, A.; Das, A.; Moessner, R., Periodic thermodynamics of isolated quantum systems, Phys. Rev. Lett., 112, Article 150401 pp., 2014, URL https://link.aps.org/doi/10.1103/PhysRevLett.112.150401
[425] Chandran, A.; Sondhi, S. L., Interaction-stabilized steady states in the driven \(o ( n )\) model, Phys. Rev. B, 93, Article 174305 pp., 2016, URL https://link.aps.org/doi/10.1103/PhysRevB.93.174305
[426] Bukov, M.; Gopalakrishnan, S.; Knap, M.; Demler, E., Prethermal floquet steady states and instabilities in the periodically driven, weakly interacting Bose-Hubbard model, Phys. Rev. Lett., 115, Article 205301 pp., 2015, URL https://link.aps.org/doi/10.1103/PhysRevLett.115.205301
[427] Citro, R.; Dalla Torre, E. G.; D’Alessio, L.; Polkovnikov, A.; Babadi, M.; Oka, T.; Demler, E., Dynamical stability of a many-body kapitza pendulum, Ann. Physics, 360, 694-710, 2015 · Zbl 1360.81340
[428] D’Alessio, L.; Polkovnikov, A., Many-body energy localization transition in periodically driven systems, Ann. Physics, 333, 19-33, 2013 · Zbl 1284.82041
[429] Abanin, D. A.; De Roeck, W.; Huveneers, F.m.c., Exponentially slow heating in periodically driven many-body systems, Phys. Rev. Lett., 115, Article 256803 pp., 2015, URL https://link.aps.org/doi/10.1103/PhysRevLett.115.256803
[430] Vanderstraeten, L.; Van Damme, M.; Büchler, H. P.; Verstraete, F., Quasiparticles in quantum spin chains with long-range interactions, Phys. Rev. Lett., 121, Article 090603 pp., 2018, URL https://link.aps.org/doi/10.1103/PhysRevLett.121.090603
[431] Wilczek, F., Quantum time crystals, Phys. Rev. Lett., 109, Article 160401 pp., 2012, URL https://link.aps.org/doi/10.1103/PhysRevLett.109.160401
[432] Bruno, P., Impossibility of spontaneously rotating time crystals: A no-go theorem, Phys. Rev. Lett., 111, Article 070402 pp., 2013, URL https://link.aps.org/doi/10.1103/PhysRevLett.111.070402
[433] H. Watanabe, M. Oshikawa, Absence of quantum time crystals, Phys. Rev. Lett. 114 (25) http://dx.doi.org/10.1080/physrevlett.114.251603.
[434] Sacha, K., Modeling spontaneous breaking of time-translation symmetry, Phys. Rev. A, 91, Article 033617 pp., 2015, URL https://link.aps.org/doi/10.1103/PhysRevA.91.033617
[435] Else, D. V.; Bauer, B.; Nayak, C., Floquet time crystals, Phys. Rev. Lett., 117, Article 090402 pp., 2016, URL https://link.aps.org/doi/10.1103/PhysRevLett.117.090402
[436] Khemani, V.; Lazarides, A.; Moessner, R.; Sondhi, S. L., Phase structure of driven quantum systems, Phys. Rev. Lett., 116, Article 250401 pp., 2016, URL https://link.aps.org/doi/10.1103/PhysRevLett.116.250401
[437] Sacha, K.; Zakrzewski, J., Time crystals: a review, Rep. Progr. Phys., 81, 1, Article 016401 pp., 2017
[438] Khemani, V.; Moessner, R.; Sondhi, S. L., A brief history of time crystals, 2019, URL arXiv:1910.10745
[439] M.P. Zaletel, M. Lukin, C. Monroe, C. Nayak, F. Wilczek, N.Y. Yao, Colloquium: Quantum and classical discrete time crystals, arXiv preprint arXiv:2305.08904, http://dx.doi.org/10.48550/arXiv.2305.08904.
[440] Surace, F. M.; Russomanno, A.; Dalmonte, M.; Silva, A.; Fazio, R.; Iemini, F., Floquet time crystals in clock models, Phys. Rev. B, 99, Article 104303 pp., 2019, URL https://link.aps.org/doi/10.1103/PhysRevB.99.104303
[441] M.H. Muñ oz-Arias, K. Chinni, P.M. Poggi, Floquet time crystals in driven spin systems with all-to-all \(p\)-body interactions, Phys. Rev. Res. 4 (2) http://dx.doi.org/10.1080/physrevresearch.4.023018.
[442] Pizzi, A.; Malz, D.; De Tomasi, G.; Knolle, J.; Nunnenkamp, A., Time crystallinity and finite-size effects in clean floquet systems, Phys. Rev. B, 102, Article 214207 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevB.102.214207
[443] Giergiel, K.; Miroszewski, A.; Sacha, K., Time crystal platform: From quasicrystal structures in time to systems with exotic interactions, Phys. Rev. Lett., 120, Article 140401 pp., 2018, URL https://link.aps.org/doi/10.1103/PhysRevLett.120.140401
[444] Pizzi, A.; Knolle, J.; Nunnenkamp, A., Higher-order and fractional discrete time crystals in clean long-range interacting systems, Nature Commun., 12, 1, 2341, 2021
[445] Pizzi, A.; Nunnenkamp, A.; Knolle, J., Classical prethermal phases of matter, Phys. Rev. Lett., 127, Article 140602 pp., 2021, URL https://link.aps.org/doi/10.1103/PhysRevLett.127.140602
[446] Pizzi, A.; Nunnenkamp, A.; Knolle, J., Classical approaches to prethermal discrete time crystals in one, two, and three dimensions, Phys. Rev. B, 104, Article 094308 pp., 2021, URL https://link.aps.org/doi/10.1103/PhysRevB.104.094308
[447] Sciolla, B.; Biroli, G., Quantum quenches, dynamical transitions, and off-equilibrium quantum criticality, Phys. Rev. B, 88, Article 201110 pp., 2013, URL https://link.aps.org/doi/10.1103/PhysRevB.88.201110
[448] Kolmogorov, A. N., On conservation of conditionally periodic motions for a small change in Hamilton’s function, Dokl. Akad. Nauk SSSR, 98, 527-530, 1954, URL http://cds.cern.ch/record/430016 · Zbl 0056.31502
[449] Arnol’d, V. I., Proof of a theorem of a. n. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian, Russian Math. Surveys, 18, 5, 9, 1963 · Zbl 0129.16606
[450] Möser, J., On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen, II, 1-20, 1962, URL https://cds.cern.ch/record/430015 · Zbl 0107.29301
[451] Brown, M.; Neumann, W. D., Proof of the Poincaré-Birkhoff fixed point theorem, Michigan Math. J., 24, 1, 21-31, 1977 · Zbl 0402.55001
[452] Auerbach, A., Interacting Electrons and Quantum Magnetism, 1994, Springer New York
[453] Giachetti, G.; Solfanelli, A.; Correale, L.; Defenu, N., Fractal nature of high-order time crystal phases, Phys. Rev. B, 108, Article L140102 pp., 2023, URL https://link.aps.org/doi/10.1103/PhysRevB.108.L140102
[454] Wisniacki, D. A.; Saraceno, M.; Arranz, F. J.; Benito, R. M.; Borondo, F., Poincaré-Birkhoff theorem in quantum mechanics, Phys. Rev. E, 84, Article 026206 pp., 2011, URL https://link.aps.org/doi/10.1103/PhysRevE.84.026206
[455] Hastings, M. B., Exact multifractal spectra for arbitrary laplacian random walks, Phys. Rev. Lett., 88, Article 055506 pp., 2002, URL https://link.aps.org/doi/10.1103/PhysRevLett.88.055506
[456] Duplantier, B., Conformally invariant fractals and potential theory, Phys. Rev. Lett., 84, 1363-1367, 2000, URL https://link.aps.org/doi/10.1103/PhysRevLett.84.1363 · Zbl 1042.82577
[457] Kager, W.; Nienhuis, B., A guide to stochastic Löwner evolution and its applications, J. Stat. Phys., 115, 5, 1149-1229, 2004 · Zbl 1157.82327
[458] Cardy, J., Sle for theoretical physicists, Ann. Physics, 318, 1, 81-118, 2005, Special Issue, URL https://www.sciencedirect.com/science/article/pii/S0003491605000527 · Zbl 1073.81068
[459] MacKay, R., A renormalization approach to invariant circles in area-preserving maps, Physica D, 7, 1, 283-300, 1983, URL https://www.sciencedirect.com/science/article/pii/0167278983901318 · Zbl 1194.37068
[460] Ojeda Collado, H. P.; Usaj, G.; Balseiro, C. A.; Zanette, D. H.; Lorenzana, J., Emergent parametric resonances and time-crystal phases in driven Bardeen-Cooper-Schrieffer systems, Phys. Rev. Res., 3, Article L042023 pp., 2021, URL https://link.aps.org/doi/10.1103/PhysRevResearch.3.L042023
[461] Hazzard, K. R.A.; Manmana, S. R.; Foss-Feig, M.; Rey, A. M., Far-from-equilibrium quantum magnetism with ultracold polar molecules, Phys. Rev. Lett., 110, Article 075301 pp., 2013, URL https://link.aps.org/doi/10.1103/PhysRevLett.110.075301
[462] Lashkari, N.; Stanford, D.; Hastings, M.; Osborne, T.; Hayden, P., Towards the fast scrambling conjecture, J. High Energy Phys., 2013, 4, 1-33, 2013, URL https://link.springer.com/article/10.1007/JHEP04(2013)022 · Zbl 1342.81374
[463] Sweke, R.; Eisert, J.; Kastner, M., Lieb-robinson bounds for open quantum systems with long-ranged interactions, J. Phys. A, 52, 42, Article 424003 pp., 2019 · Zbl 1509.81551
[464] Rajabpour, M. A.; Sotiriadis, S., Quantum quench in long-range field theories, Phys. Rev. B, 91, 4, Article 045131 pp., 2015
[465] Matsuta, T.; Koma, T.; Nakamura, S., Improving the Lieb-Robinson bound for long-range interactions, Ann. Henri Poincaré, 18, 2, 519-528, 2017 · Zbl 1357.81167
[466] Hermes, S.; Apollaro, T. J.G.; Paganelli, S.; Macrì, T., Dimensionality-enhanced quantum state transfer in long-range-interacting spin systems, Phys. Rev. A, 101, Article 053607 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevA.101.053607
[467] Else, D. V.; Machado, F.; Nayak, C.; Yao, N. Y., Improved Lieb-Robinson bound for many-body hamiltonians with power-law interactions, Phys. Rev. A, 101, Article 022333 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevA.101.022333
[468] Guo, A. Y.; Tran, M. C.; Childs, A. M.; Gorshkov, A. V.; Gong, Z.-X., Signaling and scrambling with strongly long-range interactions, Phys. Rev. A, 102, Article 010401 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevA.102.010401
[469] Foss-Feig, M.; Gong, Z.-X.; Clark, C. W.; Gorshkov, A. V., Nearly linear light cones in long-range interacting quantum systems, Phys. Rev. Lett., 114, Article 157201 pp., 2015, URL https://link.aps.org/doi/10.1103/PhysRevLett.114.157201
[470] Santos, L. F.; Borgonovi, F.; Celardo, G. L., Cooperative shielding in many-body systems with long-range interaction, Phys. Rev. Lett., 116, Article 250402 pp., 2016, URL https://link.aps.org/doi/10.1103/PhysRevLett.116.250402
[471] Bhakuni, D. S.; Santos, L. F.; Lev, Y. B., Suppression of heating by long-range interactions in periodically driven spin chains, Phys. Rev. B, 104, Article L140301 pp., 2021
[472] Vodola, D.; Lepori, L.; Ercolessi, E.; Pupillo, G., Long-range Ising and Kitaev models: phases, correlations and edge modes, New J. Phys., 18, 1, Article 015001 pp., 2016
[473] Maghrebi, M. F.; Gong, Z.-X.; Foss-Feig, M.; Gorshkov, A. V., Causality and quantum criticality in long-range lattice models, Phys. Rev. B, 93, 12, Article 125128 pp., 2016
[474] Viyuela, O.; Fu, L.; Martin-Delgado, M. A., Chiral topological superconductors enhanced by long-range interactions, Phys. Rev. Lett., 120, Article 017001 pp., 2018, URL https://link.aps.org/doi/10.1103/PhysRevLett.120.017001
[475] Pezzè, L.; Gabbrielli, M.; Lepori, L.; Smerzi, A., Multipartite entanglement in topological quantum phases, Phys. Rev. Lett., 119, Article 250401 pp., 2017, URL https://link.aps.org/doi/10.1103/PhysRevLett.119.250401
[476] Wang, H.; Shao, L. B.; Zhao, Y. X.; Sheng, L.; Wang, B. G.; Xing, D. Y., Effective long-range pairing and hopping in topological nanowires weakly coupled to \(s\)-wave superconductors, Phys. Rev. B, 98, Article 174512 pp., 2018, URL https://link.aps.org/doi/10.1103/PhysRevB.98.174512
[477] Botzung, T.; Hagenmüller, D.; Masella, G.; Dubail, J.; Defenu, N.; Trombettoni, A.; Pupillo, G., Effects of energy extensivity on the quantum phases of long-range interacting systems, Phys. Rev. B, 103, Article 155139 pp., 2021, URL https://link.aps.org/doi/10.1103/PhysRevB.103.155139
[478] Van Regemortel, M.; Sels, D.; Wouters, M., Information propagation and equilibration in long-range Kitaev chains, Phys. Rev. A, 93, 3, Article 032311 pp., 2016
[479] Lepori, L.; Trombettoni, A.; Vodola, D., Singular dynamics and emergence of nonlocality in long-range quantum models, J. Stat. Mech., 2017, 3, Article 033102 pp., 2017 · Zbl 1457.82032
[480] Jaschke, D.; Maeda, K.; Whalen, J. D.; Wall, M. L.; Carr, L. D., Critical phenomena and Kibble-Zurek scaling in the long-range quantum Ising chain, New J. Phys., 19, 3, Article 033032 pp., 2017 · Zbl 1514.82116
[481] Giuliano, D.; Paganelli, S.; Lepori, L., Current transport properties and phase diagram of a Kitaev chain with long-range pairing, Phys. Rev. B, 97, Article 155113 pp., 2018, URL https://link.aps.org/doi/10.1103/PhysRevB.97.155113
[482] Mishra, U.; Jafari, R.; Akbari, A., Disordered kitaev chain with long-range pairing: Loschmidt echo revivals and dynamical phase transitions, J. Phys. A, 53, 37, Article 375301 pp., 2020 · Zbl 1519.82057
[483] Solfanelli, A.; Giachetti, G.; Campisi, M.; Ruffo, S.; Defenu, N., Quantum heat engine with long-range advantages, New J. Phys., 25, 3, Article 033030 pp., 2023 · Zbl 07865306
[484] Fisher, M. E.; k. Ma, S.; Nickel, B. G., Critical exponents for long-range interactions, Phys. Rev. Lett., 29, 917-920, 1972, URL https://link.aps.org/doi/10.1103/PhysRevLett.29.917
[485] Botet, R.; Jullien, R., Large-size critical behavior of infinitely coordinated systems, Phys. Rev. B, 28, 3955-3967, 1983, URL https://link.aps.org/doi/10.1103/PhysRevB.28.3955
[486] Maghrebi, M. F.; Gong, Z.-X.; Gorshkov, A. V., Continuous symmetry breaking in 1D long-range interacting quantum systems, Phys. Rev. Lett., 119, 2, Article 023001 pp., 2017
[487] Giachetti, G.; Defenu, N.; Ruffo, S.; Trombettoni, A., Berezinskii-kosterlitz-thouless phase transitions with long-range couplings, Phys. Rev. Lett., 127, Article 156801 pp., 2021, URL https://link.aps.org/doi/10.1103/PhysRevLett.127.156801
[488] Marino, J., Universality class of Ising critical states with long-range losses, Phys. Rev. Lett., 129, Article 050603 pp., 2022, URL https://link.aps.org/doi/10.1103/PhysRevLett.129.050603
[489] Podolsky, D.; Shimshoni, E.; Silvi, P.; Montangero, S.; Calarco, T.; Morigi, G.; Fishman, S., From classical to quantum criticality, Phys. Rev. B, 89, 21, 401, 2014
[490] Silvi, P.; Morigi, G.; Calarco, T.; Montangero, S., Crossover from classical to quantum Kibble-Zurek scaling, Phys. Rev. Lett., 116, 22, 891, 2016
[491] Garel, T.; Doniach, S., Phase transitions with spontaneous modulation-the dipolar Ising ferromagnet, Phys. Rev. B, 26, 1, 325-329, 1982, URL http://dx.doi.org/10.1103/PhysRevB.26.325
[492] Chiocchetta, A.; Kiese, D.; Zelle, C. P.; Piazza, F.; Diehl, S., Cavity-induced quantum spin liquids, Nature Commun., 12, 1, 5901, 2021
[493] Morigi, G.; Fishman, S., Eigenmodes and thermodynamics of a coulomb chain in a harmonic potential, Phys. Rev. Lett., 93, Article 170602 pp., 2004, URL https://link.aps.org/doi/10.1103/PhysRevLett.93.170602
[494] Fishman, S.; De Chiara, G.; Calarco, T.; Morigi, G., Structural phase transitions in low-dimensional ion crystals, Phys. Rev. B, 77, Article 064111 pp., 2008, URL https://link.aps.org/doi/10.1103/PhysRevB.77.064111
[495] Cormick, C.; Morigi, G., Structural transitions of ion strings in quantum potentials, Phys. Rev. Lett., 109, Article 053003 pp., 2012, URL https://link.aps.org/doi/10.1103/PhysRevLett.109.053003
[496] Silvi, P.; De Chiara, G.; Calarco, T.; Morigi, G.; Montangero, S., Full characterization of the quantum linear-zigzag transition in atomic chains, Ann. Phys., Lpz., 525, 10-11, 827-832, 2013
[497] Nigmatullin, R.; Del Campo, A.; De Chiara, G.; Morigi, G.; Plenio, M. B.; Retzker, A., Formation of helical ion chains, Phys. Rev. A, 93, 1, Article 014106 pp., 2016
[498] Birnkammer, S.; Bohrdt, A.; Grusdt, F.; Knap, M., Characterizing topological excitations of a long-range Heisenberg model with trapped ions, Phys. Rev. B, 105, Article L241103 pp., 2022
[499] Pupillo, G.; Griessner, A.; Micheli, A.; Ortner, M.; Wang, D.-W.; Zoller, P., Cold atoms and molecules in self-assembled dipolar lattices, Phys. Rev. Lett., 100, Article 050402 pp., 2008, URL https://link.aps.org/doi/10.1103/PhysRevLett.100.050402
[500] Lu, M.; Burdick, N. Q.; Lev, B. L., Quantum degenerate dipolar fermi gas, Phys. Rev. Lett., 108, Article 215301 pp., 2012, URL https://link.aps.org/doi/10.1103/PhysRevLett.108.215301
[501] Cartarius, F.; Morigi, G.; Minguzzi, A., Structural transitions of nearly second order in classical dipolar gases, Phys. Rev. A, 90, Article 053601 pp., 2014, URL https://link.aps.org/doi/10.1103/PhysRevA.90.053601
[502] Natale, G.; van Bijnen, R. M.W.; Patscheider, A.; Petter, D.; Mark, M. J.; Chomaz, L.; Ferlaino, F., Excitation spectrum of a trapped dipolar supersolid and its experimental evidence, Phys. Rev. Lett., 123, Article 050402 pp., 2019, URL https://link.aps.org/doi/10.1103/PhysRevLett.123.050402
[503] Tanzi, L.; Lucioni, E.; Famà, F.; Catani, J.; Fioretti, A.; Gabbanini, C.; Bisset, R. N.; Santos, L.; Modugno, G., Observation of a dipolar quantum gas with metastable supersolid properties, Phys. Rev. Lett., 122, 13, Article 130405 pp., 2019, arXiv:1811.02613, URL https://link.aps.org/doi/10.1103/PhysRevLett.122.130405
[504] Böttcher, F.; Schmidt, J.-N.; Hertkorn, J.; Ng, K. S.H.; Graham, S. D.; Guo, M.; Langen, T.; Pfau, T., New states of matter with fine-tuned interactions: quantum droplets and dipolar supersolids, Rep. Progr. Phys., 84, 1, Article 012403 pp., 2021
[505] Fernández-Vidal, S.; De Chiara, G.; Larson, J.; Morigi, G., Quantum ground state of self-organized atomic crystals in optical resonators, Phys. Rev. A, 81, 4, Article 043407 pp., 2010, URL http://link.aps.org/doi/10.1103/PhysRevA.81.043407
[506] Larson, J.; Damski, B.; Morigi, G.; Lewenstein, M., Mott-insulator states of ultracold atoms in optical resonators, Phys. Rev. Lett., 100, 5, Article 050401 pp., 2008, URL http://link.aps.org/doi/10.1103/PhysRevLett.100.050401
[507] Himbert, L.; Cormick, C.; Kraus, R.; Sharma, S.; Morigi, G., Mean-field phase diagram of the extended Bose-Hubbard model of many-body cavity quantum electrodynamics, Phys. Rev. A, 99, 4, Article 043633 pp., 2019, URL https://link.aps.org/doi/10.1103/PhysRevA.99.043633
[508] Baltrusch, J. D.; Cormick, C.; Morigi, G., Quantum quenches of ion Coulomb crystals across structural instabilities, Phys. Rev. A, 86, 3, 53, 2012
[509] Silvi, P.; Calarco, T.; Morigi, G.; Montangero, S., Ab initio characterization of the quantum linear-zigzag transition using density matrix renormalization group calculations, Phys. Rev. B, 89, 9, 401, 2014
[510] Landig, R.; Brennecke, F.; Mottl, R.; Donner, T.; Esslinger, T., Measuring the dynamic structure factor of a quantum gas undergoing a structural phase transition, Nature Commun., 6, 1, 7046, 2015
[511] Keller, T.; Torggler, V.; Jäger, S. B.; Schütz, S.; Ritsch, H.; Morigi, G., Quenches across the self-organization transition in multimode cavities, New J. Phys., 20, 2, Article 025004 pp., 2018
[512] Landini, M.; Dogra, N.; Kroeger, K.; Hruby, L.; Donner, T.; Esslinger, T., Formation of a spin texture in a quantum gas coupled to a cavity, Phys. Rev. Lett., 120, 22, Article 223602 pp., 2018
[513] Habibian, H.; Winter, A.; Paganelli, S.; Rieger, H.; Morigi, G., Bose-glass phases of ultracold atoms due to cavity backaction, Phys. Rev. Lett., 110, 7, Article 075304 pp., 2013, URL http://link.aps.org/doi/10.1103/PhysRevLett.110.075304
[514] Dogra, N.; Brennecke, F.; Huber, S. D.; Donner, T., Phase transitions in a Bose-Hubbard model with cavity-mediated global-range interactions, Phys. Rev. A, 94, 2, Article 023632 pp., 2016, arXiv:1604.00865, URL http://arxiv.org/abs/1604.00865https://link.aps.org/doi/10.1103/PhysRevA.94.023632
[515] Henkel, N.; Nath, R.; Pohl, T., Three-dimensional roton excitations and supersolid formation in Rydberg-excited Bose-Einstein condensates, Phys. Rev. Lett., 104, Article 195302 pp., 2010, URL https://link.aps.org/doi/10.1103/PhysRevLett.104.195302
[516] Lu, Z.-K.; Li, Y.; Petrov, D. S.; Shlyapnikov, G. V., Stable dilute supersolid of two-dimensional dipolar bosons, Phys. Rev. Lett., 115, 7, 1191, 2015
[517] Léonard, J.; Morales, A.; Zupancic, P.; Esslinger, T.; Donner, T., Supersolid formation in a quantum gas breaking a continuous translational symmetry, Nature, 543, 7643, 87-90, 2017, arXiv:1609.09053, URL http://arxiv.org/abs/1609.09053http://www.nature.com/doifinder/10.1038/nature21067http://dx.doi.org/10.1038/nature21067http://www.nature.com/articles/nature21067
[518] Tanzi, L.; Roccuzzo, S. M.; Lucioni, E.; Famà, F.; Fioretti, A.; Gabbanini, C.; Modugno, G.; Recati, A.; Stringari, S., Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas, Nature, 574, 7778, 382-385, 2019
[519] Sohmen, M.; Politi, C.; Klaus, L.; Chomaz, L.; Mark, M. J.; Norcia, M. A.; Ferlaino, F., Birth, life, and death of a dipolar supersolid, Phys. Rev. Lett., 126, Article 233401 pp., 2021, URL https://link.aps.org/doi/10.1103/PhysRevLett.126.233401
[520] Hertkorn, J.; Schmidt, J.-N.; Böttcher, F.; Guo, M.; Schmidt, M.; Ng, K. S.H.; Graham, S. D.; Büchler, H. P.; Langen, T.; Zwierlein, M.; Pfau, T., Density fluctuations across the superfluid-supersolid phase transition in a dipolar quantum gas, Phys. Rev. X, 11, Article 011037 pp., 2021, URL https://link.aps.org/doi/10.1103/PhysRevX.11.011037
[521] Morales, A.; Zupancic, P.; Léonard, J.; Esslinger, T.; Donner, T., Coupling two order parameters in a quantum gas, Nature Mater., 17, 8, 686-690, 2018
[522] Halimeh, J. C.; Van Damme, M.; Guo, L.; Lang, J.; Hauke, P., Dynamical phase transitions in quantum spin models with antiferromagnetic long-range interactions, Phys. Rev. B, 104, Article 115133 pp., 2021, URL https://link.aps.org/doi/10.1103/PhysRevB.104.115133
[523] Lesanovsky, I.; Garrahan, J. P., Kinetic constraints, hierarchical relaxation, and onset of glassiness in strongly interacting and dissipative rydberg gases, Phys. Rev. Lett., 111, Article 215305 pp., 2013, URL https://link.aps.org/doi/10.1103/PhysRevLett.111.215305
[524] Brunelli, M.; Fusco, L.; Landig, R.; Wieczorek, W.; Hoelscher-Obermaier, J.; Landi, G.; Semião, F. L.; Ferraro, A.; Kiesel, N.; Donner, T.; De Chiara, G.; Paternostro, M., Experimental determination of irreversible entropy production in out-of-equilibrium mesoscopic quantum systems, Phys. Rev. Lett., 121, 16, Article 160604 pp., 2018, arXiv:1602.06958, URL http://arxiv.org/abs/1602.06958http://dx.doi.org/10.1103/PhysRevLett.121.160604https://link.aps.org/doi/10.1103/PhysRevLett.121.160604
[525] Sierant, P.; Biedroń, K.; Morigi, G.; Zakrzewski, J., Many-body localization in presence of cavity mediated long-range interactions, SciPost Phys., 7, 1, 008, 2019, URL https://scipost.org/10.21468/SciPostPhys.7.1.008
[526] Jin, H.-K.; Pizzi, A.; Knolle, J., Prethermal nematic order and staircase heating in a driven frustrated Ising magnet with dipolar interactions, Phys. Rev. B, 106, Article 144312 pp., 2022, URL https://link.aps.org/doi/10.1103/PhysRevB.106.144312
[527] Mendoza-Coto, A.; Stariolo, D. A.; Nicolao, L., Nature of long-range order in stripe-forming systems with long-range repulsive interactions, Phys. Rev. Lett., 114, Article 116101 pp., 2015, URL https://link.aps.org/doi/10.1103/PhysRevLett.114.116101
[528] Mendoza-Coto, A.; Barci, D. G.; Stariolo, D. A., Quantum and thermal melting of stripe forming systems with competing long-range interactions, Phys. Rev. B, 95, Article 144209 pp., 2017, URL https://link.aps.org/doi/10.1103/PhysRevB.95.144209
[529] Diessel, Oriana K.; Diehl, Sebastian; Defenu, Nicolò; Rosch, Achim; Chiocchetta, Alessio, Generalized higgs mechanism in long-range-interacting quantum systems, Phys. Rev. Res., 5, Article 033038 pp., 2023
[530] Monthus, C.; Garel, T., The Anderson localization transition with long-ranged hoppings: analysis of the strong multifractality regime in terms of weighted Lévy sums, J. Stat. Mech. Theory Exp., 2010, 09, Article P09015 pp., 2010 · Zbl 1456.82517
[531] Pino, M., Entanglement growth in many-body localized systems with long-range interactions, Phys. Rev. B, 90, 17, Article 174204 pp., 2014, URL https://link.aps.org/doi/10.1103/PhysRevB.90.174204
[532] Yao, N. Y.; Laumann, C. R.; Gopalakrishnan, S.; Knap, M.; Müller, M.; Demler, E. A.; Lukin, M. D., Many-body localization in dipolar systems, Phys. Rev. Lett., 113, Article 243002 pp., 2014, URL https://link.aps.org/doi/10.1103/PhysRevLett.113.243002
[533] Burin, A. L., Localization in a random XY model with long-range interactions: Intermediate case between single-particle and many-body problems, Phys. Rev. B, 92, 10, Article 104428 pp., 2015, URL https://link.aps.org/doi/10.1103/PhysRevB.92.104428
[534] Hauke, P.; Heyl, M., Many-body localization and quantum ergodicity in disordered long-range Ising models, Phys. Rev. B, 92, Article 134204 pp., 2015, URL https://link.aps.org/doi/10.1103/PhysRevB.92.134204
[535] Monthus, C., Many-body-localization transition in the strong disorder limit: entanglement entropy from the statistics of rare extensive resonances, Entropy, 18, 4, 122, 2016, URL https://www.mdpi.com/1099-4300/18/4/122
[536] Wu, Y.-L.; Sarma, S. D., Understanding analog quantum simulation dynamics in coupled ion-trap qubits, Phys. Rev. A, 93, 2, Article 022332 pp., 2016, URL https://link.aps.org/doi/10.1103/PhysRevA.93.022332
[537] Nandkishore, R. M.; Sondhi, S. L., Many-body localization with long-range interactions, Phys. Rev. X, 7, Article 041021 pp., 2017, URL https://link.aps.org/doi/10.1103/PhysRevX.7.041021
[538] Safavi-Naini, A.; Wall, M. L.; Acevedo, O. L.; Rey, A. M.; Nandkishore, R. M., Quantum dynamics of disordered spin chains with power-law interactions, Phys. Rev. A, 99, 3, Article 033610 pp., 2019, URL https://link.aps.org/doi/10.1103/PhysRevA.99.033610
[539] Safavi-Naini, A.; Wall, M. L.; Acevedo, O. L.; Rey, A. M.; Nandkishore, R. M., Quantum dynamics of disordered spin chains with power-law interactions, Phys. Rev. A, 99, 3, Article 033610 pp., 2019, URL https://link.aps.org/doi/10.1103/PhysRevA.99.033610
[540] Roy, S.; Logan, D. E., Self-consistent theory of many-body localisation in a quantum spin chain with long-range interactions, SciPost Phys., 7, 4, 042, 2019, URL https://scipost.org/10.21468/SciPostPhys.7.4.042
[541] Kloss, B.; Bar Lev, Y., Spin transport in disordered long-range interacting spin chain, Phys. Rev. B, 102, Article 060201 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevB.102.060201
[542] Smith, J.; Lee, A.; Richerme, P.; Neyenhuis, B.; Hess, P. W.; Hauke, P.; Heyl, M.; Huse, D. A.; Monroe, C., Many-body localization in a quantum simulator with programmable random disorder, Nat. Phys., 12, 10, 907-911, 2016, URL https://www.nature.com/articles/nphys3783
[543] Brydges, T.; Elben, A.; Jurcevic, P.; Vermersch, B.; Maier, C.; Lanyon, B. P.; Zoller, P.; Blatt, R.; Roos, C. F., Probing Rényi entanglement entropy via randomized measurements, Science, 364, 6437, 260-263, 2019, URL http://www.ncbi.nlm.nih.gov/pubmed/31000658
[544] Zu, C.; Machado, F.; Ye, B.; Choi, S.; Kobrin, B.; Mittiga, T.; Hsieh, S.; Bhattacharyya, P.; Markham, M.; Twitchen, D., Emergent hydrodynamics in a strongly interacting dipolar spin ensemble, Nature, 597, 7874, 45-50, 2021
[545] L.F. Cugliandolo, M. Mueller, Quantum glasses-a review, arXiv preprint arXiv:2208.05417, URL https://arxiv.org/abs/2208.05417.
[546] Chowdhury, D.; Georges, A.; Parcollet, O.; Sachdev, S., Sachdev-ye-kitaev models and beyond: Window into non-fermi liquids, Rev. Modern Phys., 94, Article 035004 pp., 2022, URL https://link.aps.org/doi/10.1103/RevModPhys.94.035004
[547] Fisher, M. P.; Khemani, V.; Nahum, A.; Vijay, S.; circuits, Random.quantum., Ann. Rev. Condens. Matter Phys., 14, 335-379, 2023
[548] Nahum, A.; Roy, S.; Skinner, B.; Ruhman, J., Measurement and entanglement phase transitions in all-to-all quantum circuits, on quantum trees, and in Landau-Ginsburg theory, PRX Quantum, 2, 1, Article 010352 pp., 2021
[549] Richter, J.; Lunt, O.; Pal, A., Transport and entanglement growth in long-range random clifford circuits, Phys. Rev. Res., 5, Article L012031 pp., 2023, URL https://link.aps.org/doi/10.1103/PhysRevResearch.5.L012031
[550] P. Saad, S.H. Shenker, D. Stanford, A semiclassical ramp in syk and in gravity, arXiv preprint arXiv:1806.06840, http://dx.doi.org/10.48550/arXiv.1806.06840.
[551] Zhou, T.; Chen, X., Operator dynamics in a brownian quantum circuit, Phys. Rev. E, 99, Article 052212 pp., 2019, URL https://link.aps.org/doi/10.1103/PhysRevE.99.052212
[552] Sünderhauf, C.; Piroli, L.; Qi, X.-L.; Schuch, N.; Cirac, J. I., Quantum chaos in the brownian syk model with large finite n: Otocs and tripartite information, J. High Energy Phys., 2019, 11, 1-44, 2019 · Zbl 1429.83082
[553] Piroli, L.; Sünderhauf, C.; Qi, X.-L., A random unitary circuit model for black hole evaporation, J. High Energy Phys., 2020, 4, 1-35, 2020, URL https://link.springer.com/article/10.1007/JHEP04(2020)063 · Zbl 1436.83031
[554] Jian, S.-K.; Liu, C.; Chen, X.; Swingle, B.; Zhang, P., Measurement-induced phase transition in the monitored Sachdev-Ye-Kitaev model, Phys. Rev. Lett., 127, Article 140601 pp., 2021, URL https://link.aps.org/doi/10.1103/PhysRevLett.127.140601
[555] Jian, S.-K.; Swingle, B., Note on entropy dynamics in the brownian syk model, J. High Energy Phys., 2021, 3, 1-31, 2021, URL https://link.springer.com/article/10.1007/JHEP03(2021)042 · Zbl 1461.81007
[556] Stanford, D.; Yang, Z.; Yao, S., Subleading weingartens, J. High Energy Phys., 2022, 2, 1-50, 2022 · Zbl 1522.83079
[557] Davies, E. B., Exact dynamics of an infinite-atom Dicke maser model, Comm. Math. Phys., 33, 3, 187-205, 1973
[558] Alicki, R.; Messer, J., Nonlinear quantum dynamical semigroups for many-body open systems, J. Stat. Phys., 32, 2, 299-312, 1983 · Zbl 0584.35054
[559] Mori, T., Exactness of the mean-field dynamics in optical cavity systems, J. Stat. Mech. Theory Exp., 2013, 06, Article P06005 pp., 2013 · Zbl 1456.82004
[560] Benatti, F.; Carollo, F.; Floreanini, R.; Narnhofer, H., Non-markovian mesoscopic dissipative dynamics of open quantum spin chains, Phys. Lett. A, 380, 3, 381-389, 2016 · Zbl 1349.81120
[561] Kirton, P.; Keeling, J., Suppressing and restoring the Dicke superradiance transition by dephasing and decay, Phys. Rev. Lett., 118, Article 123602 pp., 2017, URL https://link.aps.org/doi/10.1103/PhysRevLett.118.123602
[562] Shammah, N.; Ahmed, S.; Lambert, N.; De Liberato, S.; Nori, F., Open quantum systems with local and collective incoherent processes: Efficient numerical simulations using permutational invariance, Phys. Rev. A, 98, Article 063815 pp., 2018, URL https://link.aps.org/doi/10.1103/PhysRevA.98.063815
[563] Benatti, F.; Carollo, F.; Floreanini, R.; Narnhofer, H., Quantum spin chain dissipative mean-field dynamics, J. Phys. A, 51, 32, Article 325001 pp., 2018 · Zbl 1400.81128
[564] D. Huybrechts, F. Minganti, F. Nori, M. Wouters, N. Shammah, Validity of mean-field theory in a dissipative critical system: Liouvillian gap model, Phys. Rev. B 101 (21) http://dx.doi.org/10.1080/physrevb.101.214302.
[565] Wang, P.; Fazio, R., Dissipative phase transitions in the fully connected Ising model with \(p\)-spin interaction, Phys. Rev. A, 103, Article 013306 pp., 2021, URL https://link.aps.org/doi/10.1103/PhysRevA.103.013306
[566] Piccitto, G.; Wauters, M.; Nori, F.; Shammah, N., Symmetries and conserved quantities of boundary time crystals in generalized spin models, Phys. Rev. B, 104, Article 014307 pp., 2021, URL https://link.aps.org/doi/10.1103/PhysRevB.104.014307
[567] Carollo, F.; Lesanovsky, I., Exactness of mean-field equations for open Dicke models with an application to pattern retrieval dynamics, Phys. Rev. Lett., 126, Article 230601 pp., 2021, URL https://link.aps.org/doi/10.1103/PhysRevLett.126.230601
[568] Lundgren, R.; Gorshkov, A. V.; Maghrebi, M. F., Nature of the nonequilibrium phase transition in the non-markovian driven Dicke model, Phys. Rev. A, 102, Article 032218 pp., 2020
[569] Carollo, F.; Garrahan, J. P.; Lesanovsky, I., Current fluctuations in boundary-driven quantum spin chains, Phys. Rev. B, 98, Article 094301 pp., 2018, URL https://link.aps.org/doi/10.1103/PhysRevB.98.094301
[570] Benatti, F.; Carollo, F.; Floreanini, R.; Narnhofer, H., Quantum fluctuations in mesoscopic systems, J. Phys. A, 50, 42, Article 423001 pp., 2017 · Zbl 1390.81063
[571] Buonaiuto, G.; Carollo, F.; Olmos, B.; Lesanovsky, I., Dynamical phases and quantum correlations in an emitter-waveguide system with feedback, Phys. Rev. Lett., 127, Article 133601 pp., 2021
[572] Boneberg, M.; Lesanovsky, I.; Carollo, F., Quantum fluctuations and correlations in open quantum Dicke models, Phys. Rev. A, 106, Article 012212 pp., 2022
[573] Sieberer, L. M.; Huber, S. D.; Altman, E.; Diehl, S., Dynamical critical phenomena in driven-dissipative systems, Phys. Rev. Lett., 110, 19, Article 195301 pp., 2013
[574] Buča, B.; Jaksch, D., Dissipation induced nonstationarity in a quantum gas, Phys. Rev. Lett., 123, Article 260401 pp., 2019
[575] Kirton, P.; Roses, M. M.; Keeling, J.; Dalla Torre, E. G., Introduction to the Dicke model: From equilibrium to nonequilibrium, and vice versa (adv. quantum technol. 1-2/2019), Adv. Quantum Technol., 2, 1-2, Article 1970013 pp., 2019
[576] Passarelli, G.; Lucignano, P.; Fazio, R.; Russomanno, A., Dissipative time crystals with long-range lindbladians, Phys. Rev. B, 106, Article 224308 pp., 2022, URL https://link.aps.org/doi/10.1103/PhysRevB.106.224308
[577] Souza, L.d. S.; dos Prazeres, L. F.; Iemini, F., Sufficient condition for gapless spin-boson lindbladians, and its connection to dissipative time crystals, Phys. Rev. Lett., 130, Article 180401 pp., 2023
[578] D. Sulz, C. Lubich, G. Ceruti, I. Lesanovsky, F. Carollo, Numerical simulations of long-range open quantum many-body dynamics with tree tensor networks, arXiv preprint arXiv:2304.06075, http://dx.doi.org/10.48550/arXiv.2304.06075.
[579] Zhu, B.; Marino, J.; Yao, N. Y.; Lukin, M. D.; Demler, E. A., Dicke time crystals in driven-dissipative quantum many-body systems, New J. Phys., 21, 7, Article 073028 pp., 2019
[580] Seetharam, K.; Lerose, A.; Fazio, R.; Marino, J., Correlation engineering via nonlocal dissipation, Phys. Rev. Res., 4, Article 013089 pp., 2022, URL https://link.aps.org/doi/10.1103/PhysRevResearch.4.013089
[581] Seetharam, K.; Lerose, A.; Fazio, R.; Marino, J., Dynamical scaling of correlations generated by short- and long-range dissipation, Phys. Rev. B, 105, Article 184305 pp., 2022, URL https://link.aps.org/doi/10.1103/PhysRevB.105.184305
[582] Kloss, B.; Bar Lev, Y., Spin transport in a long-range-interacting spin chain, Phys. Rev. A, 99, Article 032114 pp., 2019, URL https://link.aps.org/doi/10.1103/PhysRevA.99.032114
[583] Schuckert, A.; Lovas, I.; Knap, M., Nonlocal emergent hydrodynamics in a long-range quantum spin system, Phys. Rev. B, 101, Article 020416 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevB.101.020416
[584] Joshi, M. K.; Kranzl, F.; Schuckert, A.; Lovas, I.; Maier, C.; Blatt, R.; Knap, M.; Roos, C. F., Observing emergent hydrodynamics in a long-range quantum magnet, Science, 376, 6594, 720-724, 2022
[585] A. Morningstar, N. O’Dea, J. Richter, Hydrodynamics in long-range interacting systems with center-of-mass conservation, arXiv preprint arXiv:2304.12354, URL https://arxiv.org/pdf/2304.12354.pdf.
[586] O. Ogunnaike, J. Feldmeier, J.Y. Lee, Unifying emergent hydrodynamics and lindbladian low energy spectra across symmetries, constraints, and long-range interactions, arXiv preprint arXiv:2304.13028, URL https://arxiv.org/pdf/2304.13028.pdf.
[587] J. Gliozzi, J. May-Mann, T.L. Hughes, G. De Tomasi, Hierarchical hydrodynamics in long-range multipole-conserving systems, arXiv preprint arXiv:2304.12342, http://dx.doi.org/10.48550/arXiv.2304.12342.
[588] Deng, X.; Ray, S.; Sinha, S.; Shlyapnikov, G. V.; Santos, L., One-dimensional quasicrystals with power-law hopping, Phys. Rev. Lett., 123, Article 025301 pp., 2019, URL https://link.aps.org/doi/10.1103/PhysRevLett.123.025301
[589] Roy, N.; Sharma, A., Fraction of delocalized eigenstates in the long-range Aubry-André-Harper model, Phys. Rev. B, 103, Article 075124 pp., 2021, URL https://link.aps.org/doi/10.1103/PhysRevB.103.075124
[590] Fraxanet, J.; Bhattacharya, U.; Grass, T.; Lewenstein, M.; Dauphin, A., Localization and multifractal properties of the long-range Kitaev chain in the presence of an Aubry-André-Harper modulation, Phys. Rev. B, 106, Article 024204 pp., 2022, URL https://link.aps.org/doi/10.1103/PhysRevB.106.024204
[591] Wang, H.; Zheng, X.; Chen, J.; Xiao, L.; Jia, S.; Zhang, L., Fate of the reentrant localization phenomenon in the one-dimensional dimerized quasiperiodic chain with long-range hopping, Phys. Rev. B, 107, Article 075128 pp., 2023, URL https://link.aps.org/doi/10.1103/PhysRevB.107.075128
[592] Liu, T.; Guo, H.; Pu, Y.; Longhi, S., Generalized Aubry-André self-duality and mobility edges in non-hermitian quasiperiodic lattices, Phys. Rev. B, 102, Article 024205 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevB.102.024205
[593] Patrick, K.; Neupert, T.; Pachos, J. K., Topological quantum liquids with long-range couplings, Phys. Rev. Lett., 118, Article 267002 pp., 2017, URL https://link.aps.org/doi/10.1103/PhysRevLett.118.267002
[594] Jäger, S. B.; Dell’Anna, L.; Morigi, G., Edge states of the long-range Kitaev chain: An analytical study, Phys. Rev. B, 102, Article 035152 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevB.102.035152
[595] Tarantola, Alessandro; Defenu, Nicolò, Softening of majorana edge states by long-range couplings, Phys. Rev. B, 107, 235146, 2023
[596] Gong, Z.; Guaita, T.; Cirac, J. I., Long-range free fermions: Lieb-Robinson bound, clustering properties, and topological phases, Phys. Rev. Lett., 130, Article 070401 pp., 2023, URL https://link.aps.org/doi/10.1103/PhysRevLett.130.070401
[597] Vijay, S., Measurement-driven Phase Transition within a Volume-Law Entangled Phase, 2020, URL http://arxiv.org/abs/2005.03052
[598] Gullans, M. J.; Huse, D. A., Dynamical Purification Phase Transition Induced by Quantum Measurements, Phys. Rev. X, 10, 4, Article 041020 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevX.10.041020
[599] Block, M.; Bao, Y.; Choi, S.; Altman, E.; Yao, N. Y., Measurement-induced Transition in Long-Range Interacting Quantum Circuits, Phys. Rev. Lett., 128, 1, Article 010604 pp., 2022, URL https://link.aps.org/doi/10.1103/PhysRevLett.128.010604
[600] Sharma, S.; Turkeshi, X.; Fazio, R.; Dalmonte, M., Measurement-induced criticality in extended and long-range unitary circuits, SciPost Phys. Core, 5, 2, 023, 2022, URL https://scipost.org/10.21468/SciPostPhysCore.5.2.023
[601] Minato, T.; Sugimoto, K.; Kuwahara, T.; Saito, K., Fate of Measurement-Induced Phase Transition in Long-Range Interactions, Phys. Rev. Lett., 128, 1, Article 010603 pp., 2022, URL https://link.aps.org/doi/10.1103/PhysRevLett.128.010603
[602] Passarelli, G.; Turkeshi, X.; Russomanno, A.; Lucignano, P.; Schirò, M.; Fazio, R., Post-selection-free Measurement-Induced Phase Transition in Driven Atomic Gases with Collective Decay, 2023, arXiv:2306.00841 [quant-ph], URL http://arxiv.org/abs/2306.00841
[603] Sierant, P.; Turkeshi, X., Controlling Entanglement at Absorbing State Phase Transitions in Random Circuits, Phys. Rev. Lett., 130, 12, Article 120402 pp., 2023, URL https://link.aps.org/doi/10.1103/PhysRevLett.130.120402
[604] Sierant, P.; Chiriacò, G.; Surace, F. M.; Sharma, S.; Turkeshi, X.; Dalmonte, M.; Fazio, R.; Pagano, G., Dissipative Floquet Dynamics: from Steady State to Measurement Induced Criticality in Trapped-ion Chains, Quantum, 6, 638, 2022, arXiv:2107.05669 [cond-mat, physics:quant-ph], URL http://arxiv.org/abs/2107.05669
[605] Müller, T.; Diehl, S.; Buchhold, M., Measurement-induced Dark State Phase Transitions in Long-Ranged Fermion Systems, Phys. Rev. Lett., 128, 1, Article 010605 pp., 2022, URL https://link.aps.org/doi/10.1103/PhysRevLett.128.010605
[606] Noel, C.; Niroula, P.; Zhu, D.; Risinger, A.; Egan, L.; Biswas, D.; Cetina, M.; Gorshkov, A. V.; Gullans, M. J.; Huse, D. A.; Monroe, C., Observation of measurement-induced quantum phases in a trapped-ion quantum computer, Nat. Phys., 18, 7, 760-764, 2022, arXiv:2106.05881 [quant-ph], URL http://arxiv.org/abs/2106.05881
[607] K.R. Fratus, M. Srednicki, Eigenstate thermalization and spontaneous symmetry breaking in the one-dimensional transverse-field Ising model with power-law interactions, arXiv preprint arXiv:1611.03992.
[608] Schuckert, A.; Knap, M., Probing eigenstate thermalization in quantum simulators via fluctuation-dissipation relations, Phys. Rev. Res., 2, Article 043315 pp., 2020, URL https://link.aps.org/doi/10.1103/PhysRevResearch.2.043315
[609] Russomanno, A.; Fava, M.; Heyl, M., Quantum chaos and ensemble inequivalence of quantum long-range Ising chains, Phys. Rev. B, 104, Article 094309 pp., 2021, URL https://link.aps.org/doi/10.1103/PhysRevB.104.094309
[610] Sugimoto, S.; Hamazaki, R.; Ueda, M., Eigenstate thermalization in long-range interacting systems, Phys. Rev. Lett., 129, Article 030602 pp., 2022, URL https://link.aps.org/doi/10.1103/PhysRevLett.129.030602
[611] A. Lerose, T. Parolini, R. Fazio, D.A. Abanin, S. Pappalardi, Theory of robust quantum many-body scars in long-range interacting systems, arXiv preprint arXiv:2309.12504.
[612] A. Lerose, Nonequilibrium Phenomena in Quantum Many-Body Systems with Long-Range Interactions, (Ph.D. thesis), URL.
[613] Born, M.; Huang, K., Dynamical Theory of Crystal Lattices, 1966, Clarendon Press
[614] Lerose, A.; Sanzeni, A.; Carati, A.; Galgani, L., Classical microscopic theory of polaritons in ionic crystals, Eur. Phys. J. D, 68, 1-12, 2014, URL https://link.springer.com/article/10.1140/epjd/e2013-40331-y#citeas
[615] L. Landau, E. Lifshitz, Course of Theoretical Physics, in: Quantum Mechanics. Non-relativistic Theory, vol. 3, London, 1958. · Zbl 0081.22207
[616] Wheeler, N., Remarks Concerning the Status & Some Ramifications of Ehrenfest’s Theorem, 1998, Reed College, URL https://www.reed.edu/physics/faculty/wheeler/documents/Quantum
[617] Littlejohn, R. G., The semiclassical evolution of wave packets, Phys. Rep., 138, 193, 1986
[618] Calabrese, P.; Cardy, J., Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. Theory Exp., 2005, 04, Article P04010 pp., 2005 · Zbl 1456.82578
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.