×

Switched electromechanical dynamics for transient phase control of brushed DC servomotor. (English) Zbl 07880313


MSC:

37-XX Dynamical systems and ergodic theory
34-XX Ordinary differential equations
Full Text: DOI

References:

[1] Hernandez-Marquez, E.; Avila-Rea, C. A.; Silva-Ortigoza, R.; Garcia-Sanchez, J. R.; Antonio-Cruz, M.; Taud, H.; Marcelino-Aranda, M., 2017, IEEE
[2] Hearn, C. S.; Lewis, M. C.; Thompson, R. C.; Longoria, R. G., 2009, IEEE
[3] Broderick, J.; Tilbury, D.; Atkins, E., 2012, ASME
[4] Lorenz, M.; Paris, J.; Scholer, F.; Barreto, J.-P.; Mannheim, T.; Husing, M.; Corves, B., 2017, ASME
[5] De Santos, P. G.; Garcia, E.; Ponticelli, R.; Armada, M., Minimizing energy consumption in hexapod robots, Adv. Robot., 23, 6, 681-704, 2009 · doi:10.1163/156855309X431677
[6] Hirakawa, A. R.; Kawamura, A., 1997, IEEE
[7] Ma, S., Time-optimal control of robotic manipulators with limit heat characteristics of the actuator, Adv. Robot., 16, 4, 309-324, 2002 · doi:10.1163/15685530260174502
[8] Potts, A. S.; da Cruz, J. J., Optimal power loss motion planning in legged robots, Robotica, 34, 2, 423-448, 2014 · doi:10.1017/S0263574714001544
[9] Roberts, D.; Quacinella, J.; Kim, J. H., Energy expenditure of a biped walking robot: Instantaneous and degree-of-freedom-based instrumentation with human gait implications, Robotica, 35, 5, 1054-1071, 2017 · doi:10.1017/S0263574715000983
[10] Ur-Rehman, R.; Caro, S.; Chablat, D.; Wenger, P., Multi-objective path placement optimization of parallel kinematics machines based on energy consumption, shaking forces and maximum actuator torques: Application to the orthoglide, Mech. Mach. Theory, 45, 8, 1125-1141, 2010 · Zbl 1377.70017 · doi:10.1016/j.mechmachtheory.2010.03.008
[11] Hughes, A.; Drury, B., Electric Motors and Drives, 2013, Newnes: Newnes, Waltham: Newnes: Newnes, Waltham, MA
[12] Hart, D. W., Power Electronics, 2011, McGraw-Hill: McGraw-Hill, New York
[13] Mohan, N.; Undeland, T. M.; Robbins, W. P., Power Electronics Converters, Applications and Design, 2003, John Wiley & Sons, Inc.: John Wiley & Sons, Inc., Hoboken: John Wiley & Sons, Inc.: John Wiley & Sons, Inc., Hoboken, NJ
[14] Bhounsule, P. A.; Cortell, J.; Grewal, A.; Hendriksen, B.; Karssen, J. G. D.; Paul, C.; Ruina, A., Low-bandwidth reflex-based control for lower power walking: 65 km on a single battery charge, Int. J. Robot. Res., 33, 10, 1305-1321, 2014 · doi:10.1177/0278364914527485
[15] Nahon, M.; Angeles, J., Minimization of power losses in cooperating manipulators, J. Dyn. Syst. Meas. Control, 114, 2, 213-219, 1992 · Zbl 0774.93054 · doi:10.1115/1.2896517
[16] Verstraten, T.; Furnemont, R.; Mathijssen, G.; Vanderborght, B.; Lefeber, D., Energy consumption of geared DC motors in dynamic applications: Comparing modeling approaches, IEEE Robot. Autom. Lett., 1, 1, 524-530, 2016 · doi:10.1109/LRA.2016.2517820
[17] Traversaro, S.; Del Prete, A.; Muradore, R.; Natale, L.; Nori, F., 2013, IEEE
[18] Pagani, R.; Legnani, G.; Incerti, G.; Gheza, M., Evaluation and modeling of the friction in robotic joints considering thermal effects, J. Mech. Robot., 12, 2, 021108, 2020 · doi:10.1115/1.4045939
[19] Heck, B. S., Sliding-mode control for singularly perturbed systems, Int. J. Control, 53, 4, 985-1001, 1991 · Zbl 0735.93030 · doi:10.1080/00207179108953660
[20] Alfred, D.; Czarkowski, D.; Teng, J., 2021, IEEE
[21] Krein, P. T.; Bentsman, J.; Bass, R. M.; Lesieutre, B. L., On the use of averaging for the analysis of power electronic systems, IEEE Trans. Power Electron., 5, 2, 182, 1990 · doi:10.1109/63.53155
[22] Lehman, B.; Bass, R. M., Extensions of averaging theory for power electronic systems, IEEE Trans. Power Electron., 11, 4, 542-553, 1996 · doi:10.1109/63.506119
[23] Acha, E.; Agelidis, V.; Anaya-Lara, O.; Miller, T., Power Electronic Control in Electrical Systems, 2002, Newnes: Newnes, Waltham: Newnes: Newnes, Waltham, MA
[24] Davoudi, A.; Jatskevich, J.; Chapman, P. L., Numerical dynamic characterization of peak current-mode-controlled DC-DC converters, IEEE Trans. Circuits Syst. II: Express Br., 56, 12, 906-910, 2009 · doi:10.1109/TCSII.2009.2035272
[25] Davoudi, A.; Jatskevich, J., Realization of parasitics in state-space average-value modeling of PWM DC-DC converters, IEEE Trans. Power Electron., 21, 4, 1142-1147, 2006 · doi:10.1109/TPEL.2006.879048
[26] Kassakian, J. G.; Schlecht, M. F.; Verghese, G. C., Principles of Power Electronics, 1991, Addison-Wesley: Addison-Wesley, New York
[27] Kislovski, A. S.; Redl, R.; Sokal, N. O., Dynamic Analysis of Switching-Mode DC/DC Converters, 1991, Van Nostrand Reinhold: Van Nostrand Reinhold, New York
[28] Iannelli, L.; Jönsson, U. T.; Vasca, F., Averaging of nonsmooth systems using dither, Automatica, 42, 4, 669-676, 2006 · Zbl 1110.93044 · doi:10.1016/j.automatica.2005.12.012
[29] Bogoliubov, N. N.; Mitropolsky, Y. A., Asymptotic Methods in the Theory of Non-Linear Oscillations, 1961, Gordon and Breach: Gordon and Breach, New York · Zbl 0151.12201
[30] Czarkowski, D.; Kazimierczuk, M. K., Energy-conservation approach to modeling PWM DC-DC converters, IEEE Trans. Aerosp. Electron. Syst., 29, 3, 1059-1063, 1993 · doi:10.1109/7.220955
[31] Zhu, G.; Luo, S.; Iannello, C.; Batarseh, I., 2000, IEEE
[32] Reatti, A.; Kazimierczuk, M. K., Small-signal model of PWM converters for discontinuous conduction mode and its application for boost converter, IEEE Trans. Circuits Syst. I: Fundam. Theory Appl., 50, 1, 65-73, 2003 · doi:10.1109/TCSI.2002.805709
[33] Vorperian, V., Simplified analysis of PWM converters using model of PWM switch part I: Continuous conduction mode, IEEE Trans. Aerosp. Electron. Syst., 26, 3, 490-496, 1990 · doi:10.1109/7.106126
[34] Vorpérian, V., Simplified analysis of PWM converters using model of PWM switch part II: Discontinuous conduction mode, IEEE Trans. Aerosp. Electron. Syst., 26, 3, 497-505, 1990 · doi:10.1109/7.106127
[35] Acary, V.; Brogliato, B., Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics, 2008, Springer-Verlag: Springer-Verlag, Berlin · Zbl 1173.74001
[36] Sadrpour, A.; Jin, J.; Ulsoy, A. G., 2012, IEEE
[37] Duindam, V.; Stramigioli, S., Modeling and Control for Efficient Bipedal Walking Robots: A Port-Based Approach, 2009, Springer-Verlag: Springer-Verlag, Berlin · Zbl 1163.93004
[38] Flynn, L. L.; Rouhollah, J.; Hellum, A.; Mukherjee, R., 2010, ASME
[39] Marhefka, D. W.; Orin, D. E., 1997, IEEE
[40] Zarrouk, D.; Fearing, R. S., 2013, IEEE
[41] Kashiri, N.; Abate, A.; Abram, S. J.; Albu-Schaffer, A.; Clary, P. J.; Daley, M.; Faraji, S., An overview on principles for energy efficient robot locomotion, Front. Robot. AI, 5, 129, 2018 · doi:10.3389/frobt.2018.00129
[42] Kormushev, P.; Ugurlu, B.; Calinon, S.; Tsagarakis, N. G.; Caldwell, D. G., 2011, IEEE
[43] Remy, C. D.; Buffinton, K.; Siegwart, R., 2012, IEEE
[44] Mei, Y.; Lu, Y.-H.; Hu, Y. C.; Lee, C. S. G., 2005, IEEE
[45] Shintaku, E., Minimum energy trajectory for an underwater manipulator and its simple planning method by using a genetic algorithm, Adv. Robot., 13, 2, 115-138, 1998 · doi:10.1163/156855399X00171
[46] Ross, D.; Nemitz, M. P.; Stokes, A. A., Controlling and simulating soft robotic systems: Insights from a thermodynamic perspective, Soft Robot., 3, 4, 170-176, 2016 · doi:10.1089/soro.2016.0010
[47] Hearn, C. S.; Weeks, D. A.; Thompson, R. C.; Chen, D., 2010, IEEE/ASME
[48] Kim, J. H., Optimization of throwing motion planning for whole-body humanoid mechanism: Sidearm and maximum distance, Mech. Mach. Theory, 46, 4, 438-453, 2011 · Zbl 1385.70015 · doi:10.1016/j.mechmachtheory.2010.11.019
[49] Kim, J. H.; Joo, C. B., Optimal motion planning of redundant manipulators with controlled task infeasibility, Mech. Mach. Theory, 64, 155-174, 2013 · doi:10.1016/j.mechmachtheory.2013.02.001
[50] Mummolo, C.; Kim, J. H., Passive and dynamic gait measures for biped mechanism: Formulation and simulation analysis, Robotica, 31, 4, 555-572, 2013 · doi:10.1017/S0263574712000586
[51] Cahill, N. M.; Sugar, T.; Holgate, M.; Schroeder, K., 2017, ASME
[52] Yesilevskiy, Y.; Yang, W.; Remy, C. D., Spine morphology and energetics: How principles from nature apply to robotics, Bioinspir. Biomim., 13, 3, 036002, 2018 · doi:10.1088/1748-3190/aaaa9e
[53] Qi, X.; Wu, G.; Boriboonsomsin, K.; Barth, M. J., Data-driven decomposition analysis and estimation of link-level electric vehicle energy consumption under real-world traffic conditions, Transp. Res. D: Transp. Environ., 64, 36-52, 2018 · doi:10.1016/j.trd.2017.08.008
[54] Fiori, C.; Ahn, K.; Rakha, H. A., Power-based electric vehicle energy consumption model: Model development and validation, Appl. Energy, 168, 257-268, 2016 · doi:10.1016/j.apenergy.2016.01.097
[55] Abousleiman, R.; Rawashdeh, O., 2015, IEEE
[56] Michaelides, E. E., Taking the measure of electric vehicles, ASME Mech. Eng. Mag., 143, 1, 48-53, 2021 · doi:10.1115/1.2021-JAN8
[57] Rizzoni, G., Principles and Applications of Electrical Engineering, 1993, Richard D. Irwin, Inc.
[58] Scheinman, V.; McCarthy, J. M.; Song, J. B.; Siciliano, B.; Khatib, O., Mechanism and actuation, Springer Handbook of Robotics, 67-89, 2016, Springer International Publishing: Springer International Publishing, Cham: Springer International Publishing: Springer International Publishing, Cham, Switzerland
[59] ROBOTIS, ROBOTIS e-Manual v1.31.01; see http://support.robotis.com/en/product/actuator/dynamixel/mx_series/mx-28at_ar.htm/.
[60] Peng, W. Z.; Mummolo, C.; Song, H.; Kim, J. H., Whole-body balance stability regions for multi-level momentum and stepping strategies, Mech. Mach. Theory, 174, 104880, 2022 · doi:10.1016/j.mechmachtheory.2022.104880
[61] Peng, W. Z.; Song, H.; Kim, J. H., Stability region-based analysis of walking and push recovery control, ASME J. Mech. Robot., 13, 3, 031103-1-031103-11, 2021 · doi:10.1115/1.4050095
[62] Tejada, V. F.; Stoelen, M. F.; Kusnierek, K.; Heiberg, N.; Korsaeth, A., Proof-of-concept robot platform for exploring automated harvesting of sugar snap peas, Precis. Agric., 18, 6, 952-972, 2017 · doi:10.1007/s11119-017-9538-1
[63] Korpela, C.; Orsag, M.; Oh, P., 2014, IEEE
[64] Dorf, R. C.; Bishop, R. H., Modern Control Systems, 2011, Prentice Hall: Prentice Hall, Upper Saddle River: Prentice Hall: Prentice Hall, Upper Saddle River, NJ
[65] Sun, J.; Vasca, F.; Iannelli, L., Pulse-width modulation, Dynamics and Control of Switched Electronic Systems: Advanced Perspectives for Modeling, Simulation and Control of Power Converters, 25-62, 2016, Springer
[66] Roberts, D.; Hillstrom, H.; Kim, J. H., Instantaneous metabolic cost of walking: Joint-space dynamic model with subject-specific heat rate, PLoS One, 11, 12, e0168070, 2016 · doi:10.1371/journal.pone.0168070
[67] Black, W. Z.; Hartley, J. G., Thermodynamics, 1991, Harpercollins College Division: Harpercollins College Division, New York
[68] Langhaar, H. L., Energy Methods in Applied Mechanics, 1989, R.E. Krieger Publishing Co.: R.E. Krieger Publishing Co., Malabar: R.E. Krieger Publishing Co.: R.E. Krieger Publishing Co., Malabar, FL
[69] Maxon Precision Motors, Inc., “RE-max 17 Data Sheet”; see https://www.maxongroup.com/medias/sys_master/root/8813529792542/14-151-EN.pdf (2014).
[72] Kara, T.; Eker, I., Nonlinear modeling and identification of a DC motor for bidirectional operation with real time experiments, Energy Convers. Manage., 45, 7-8, 1087-1106, 2004 · doi:10.1016/j.enconman.2003.08.005
[73] Kelly, M., An introduction to trajectory optimization: How to do your own direct collocation, SIAM Rev., 59, 4, 849-904, 2017 · Zbl 1474.37131 · doi:10.1137/16M1062569
[74] Xiao, C.; Chen, G.; Odendaal, W. G. H., Overview of power loss measurement techniques in power electronics systems, IEEE Trans. Ind. Appl., 43, 3, 657-664, 2007 · doi:10.1109/TIA.2007.895730
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.