×

Hybrid optimized deep recurrent neural network for atmospheric and oceanic parameters prediction by feature fusion and data augmentation model. (English) Zbl 07880138

Summary: In recent years climate prediction has obtained more attention to mitigate the impact of natural disasters caused by climatic variability. Efficient and effective climate prediction helps palliate negative consequences and allows favourable conditions for managing the resources optimally through proper planning. Due to the environmental, geopolitical and economic consequences, forecasting of atmospheric and oceanic parameters still results in a challenging task. An efficient prediction technique named Sea Lion Autoregressive Deer Hunting Optimization-based Deep Recurrent Neural Network (SLArDHO-based Deep RNN) is developed in this research to predict the oceanic and atmospheric parameters. The extraction of technical indicators makes the devised method create optimal and accurate prediction outcomes by employing the deep learning framework. The classifier uses more training samples and this can be generated by augmenting the data samples using the oversampling method. The atmospheric and the oceanic parameters are considered for the prediction strategy using the Deep RNN classifier. Here, the weights of the Deep RNN classifier are optimally tuned by the SLArDHO algorithm to find the best value based on the fitness function. The devised method obtains minimum mean squared error (MSE), root mean square error (RMSE), mean absolute error (MAE) of 0.020, 0.142, and 0.029 for the All India Rainfall Index (AIRI) dataset.

MSC:

90Cxx Mathematical programming

Software:

CAViaR
Full Text: DOI

References:

[1] Abuqaddom I, Basel AM, Hossam F (2021) Oriented stochastic loss descent algorithm to train very deep multi-layer neural networks without vanishing gradients. Knowledge-Based Syst 230(7553).
[2] AIRI dataset taken from ,”https://www.tropmet.res.in/Data
[3] Brammya, G.; Praveena, S.; Ninu Preetha, NS; Ramya, R.; Rajakumar, BR; Binu, D., Deer hunting optimization algorithm: a new nature-inspired meta-heuristic paradigm, Comp J, 2019 · doi:10.1093/comjnl/bxy133
[4] Chatterjee, S.; Dey, N.; Sen, S., Soil moisture quantity prediction using optimized neural supported model for sustainable agricultural applications, Sustain Comp Inform Syst, 28, 2020
[5] Chen, S-M; Hwang, J-R, Temperature prediction using fuzzy time series, Syst Man Cybern b Cybern IEEE Trans, 30, 2, 263-275, 2000 · doi:10.1109/3477.836375
[6] Engle, RF; Manganelli, S., CAViaR: conditional autoregressive value at risk by regression quantiles, J Bus Econ Stat, 22, 4, 367-381, 2004 · doi:10.1198/073500104000000370
[7] Hähnel, P.; Mareček, J.; Monteil, J.; O’Donncha, F., Using deep learning to extend the range of air pollution monitoring and forecasting, J Comput Phys, 408, 2020 · Zbl 07505614 · doi:10.1016/j.jcp.2020.109278
[8] Handa, R.; Hota, HS; Tandan, SR, Stock Market Prediction with various technical indicators using Neural Network techniques, Int J Res Appl Sci Eng Technol (IJRASET), 3, 4, 604-608, 2015
[9] He, Q.; Zha, C.; Song, W.; Hao, Z.; Du, Y.; Liotta, A.; Perra, C., Improved particle swarm optimization for sea surface temperature prediction, Energies, 13, 6, 1369, 2020 · doi:10.3390/en13061369
[10] Inoue, M.; Inoue, S.; Nishida, T., Deep recurrent neural network for mobile human activity recognition with high throughput, Artif Life Robot, 23, 2, 173-185, 2018 · doi:10.1007/s10015-017-0422-x
[11] Lee, W.; Kim, SH; Chu, PS; Moon, IJ; Soloviev, AV, An index to better estimate tropical cyclone intensity change in the western North Pacific, Geophys Res Lett, 46, 15, 8960-8968, 2019 · doi:10.1029/2019GL083273
[12] Masadeh R, Basel AM, Ahmad S (2019) Sea lion optimization algorithm. Int J Adv Comp Sci Appl (IJACSA) 10(5).
[13] Oyewola DO, Dada EGG, Olaoluwa OE, Al-Mustapha KA (2019) Predicting Nigerian stock returns using technical analysis and machine learning. Euro J Electrical Eng Comp Sci 3(2).
[14] Prasenan P, Suriyakala CD (2023) Novel modified convolutional neural network and FFA algorithm for fish species classification. J Combinat Optim 45(1). · Zbl 1508.92005
[15] Rajeyyagari S (2020) Automatic speaker diarization using deep LSTM in audio lecturing of e-Khool Platform. J Netw Commun Syst 3(4).
[16] Salman AG, Kanigoro B, Heryadi Y (2015) Weather forecasting using deep learning techniques. In: Proceedings of 2015 international conference on advanced computer science and information systems (ICACSIS), pp. 281-285.
[17] Sarkar, PP; Janardhan, P.; Roy, P., Prediction of sea surface temperatures using deep learning neural networks, SN Appl Sci, 2, 8, 1-14, 2020 · doi:10.1007/s42452-020-03239-3
[18] Sea ice index dataset, “https://nsidc.org/data/G02135. Accessed on August 2021.
[19] Shirsat P (2020) Developing deep neural network for learner performance prediction in EKhool online learning platform. Multimedia Res 3(4).
[20] Shynkevich, Y.; McGinnity, TM; Coleman, SA; Belatreche, A.; Li, Y., Forecasting price movements using technical indicators: investigating the impact of varying input window length, Neurocomputing, 264, 71-88, 2017 · doi:10.1016/j.neucom.2016.11.095
[21] SLH data acquired from, https://data.gov.au/dataset/ds-marlin-800eeed8-2bb3-4ba0-b5a4-ab89ab756406/distribution/dist-marlin-800eeed8-2bb3-4ba0-b5a4-ab89ab756406-0/details?q=sea
[22] Soil moisture dataset, https://www.kaggle.com/amirmohammdjalili/soil-moisture-dataset. Accessed on March 2021.
[23] Sun, W.; Fei, Su; Wang, L., Improving deep neural networks with multi-layer maxout networks and a novel initialization method, Neurocomputing, 278, 34-40, 2018 · doi:10.1016/j.neucom.2017.05.103
[24] The SST dataset will be extracted from https://www.ncei.noaa.gov/pub/data/cmb/ersst/v5/netcdf/. Accessed on March 2021.
[25] Wang, J.; Li, Y., An innovative hybrid approach for multi-step ahead wind speed prediction, Appl Soft Comput, 78, 296-309, 2019 · doi:10.1016/j.asoc.2019.02.034
[26] Wang, Q.; Tang, Y.; Dijkstra, HA, An optimization strategy for identifying parameter sensitivity in atmospheric and oceanic models, Mon Weather Rev, 145, 8, 3293-3305, 2017 · doi:10.1175/MWR-D-16-0393.1
[27] Wind speed dataset https://developer.nrel.gov/docs/wind/wind-toolkit/india-wind-download/. Accessed on March 2021.
[28] Wolff, S.; O’Donncha, F.; Chen, B., Statistical and machine learning ensemble modelling to forecast sea surface temperature, J Mar Syst, 208, 2020 · doi:10.1016/j.jmarsys.2020.103347
[29] Xiao, C.; Chen, N.; Hu, C.; Wang, K.; Gong, J.; Chen, Z., Short and mid-term sea surface temperature prediction using time-series satellite data and LSTM-AdaBoost combination approach, Remote Sens Environ, 233, 2019 · doi:10.1016/j.rse.2019.111358
[30] Ye, X.; Wu, Z., Seasonal prediction of arctic summer sea ice concentration from a partial least squares regression model, Atmosphere, 12, 2, 230, 2021 · doi:10.3390/atmos12020230
[31] Zhang, Z.; Pan, X.; Jiang, T.; Sui, B.; Liu, C.; Sun, W., Monthly and quarterly sea surface temperature prediction based on gated recurrent unit neural network, J Mar Sci Eng, 8, 4, 249, 2020 · doi:10.3390/jmse8040249
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.